

metaknowledge

A Python3 package for doing computational research on knowledge

metaknowledge is a Python3 [https://www.python.org] package for doing computational research in bibliometrics, scientometrics, and network analysis. It can also be easily used to simplify the process of doing systematic reviews in any disciplinary context.

metaknowledge reads a directory of plain text files containing meta-data on publications and citations, and writes to a variety of data structures that are suitable for longitudinal research, computational text analysis (e.g. topic models and burst analysis), Reference Publication Year Spectroscopy (RPYS), and network analysis (including multi-modal, multi-level, and dynamic). It handles large datasets (e.g. several million records) efficiently.

metaknowledge currently handles data from the Web of Science, PubMed, Scopus, Proquest Dissertations & Theses, and administrative data from the National Science Foundation and the Canadian tri-council granting agencies: SSHRC, CIHR, and NSERC.

Datasets created with metaknowledge can be analyzed using NetworkX [https://networkx.github.io] and the standard libraries [http://www.scipy.org/about.html] for data analysis in Python. It is also easy to write data to csv or graphml files for analysis and visualization in R [http://www.r-project.org], Stata [http://www.stata.com], Visone [http://visone.info], Gephi [http://gephi.github.io], or any other tools for data analysis.

metaknowledge also has a simple command line tool for extracting quantitative datasets and network files from Web of Science files. This makes the library more accessible to researchers who do not know Python, and makes it easier to quickly explore new datasets.

Contact

Reid McIlroy-Young, reid@reidmcy.com

University of Chicago, Chicago, IL, USA

John McLevey, john.mclevey@uwaterloo.ca

University of Waterloo, Waterloo, ON, Canada

Jillian Anderson, jillianderson8@gmail.com

University of Waterloo, Waterloo, ON, Canada

Citation

If you are using metaknowledge for research that will be published or publicly distributed, please acknowledge us with the following citation:

Reid McIlroy-Young, John McLevey, and Jillian Anderson. 2015. metaknowledge: open source software for social networks, bibliometrics, and sociology of knowledge research. URL: http://www.networkslab.org/metaknowledge.

Download .bib file:

License

metaknowledge is free and open source software, distributed under the GPL License.

	Installation

	Documentation

	Examples

	Command Line Tool

Indices and tables

	Index

	Module Index

	Search Page

Installation

Note: For a more recent guide to getting started, please visit the NetLab blog [https://uwaterloo.ca/networks-lab/blog/post/getting-started-metaknowledge].

metaknowledge has two distributions. The simplest is found under the release branch of the git repo [https://github.com/networks-lab/metaknowledge/tree/release], which can be installed the usual way with pip:

pip3 install metaknowledge

The second version is at the master branch on Github [https://github.com/networks-lab/metaknowledge]. It comes with extra documents and resources for teaching.

The download [https://github.com/networks-lab/metaknowledge/archive/master.zip] from Github includes a customized Vagrant [https://www.vagrantup.com/] file that installs metaknowledge and other useful Python libraries into a virtual machine. It is the easiest way of getting metaknowledge working if you are not familiar with Python.

Install with Vagrant

The Vagrant method is intended for students and anyone not familiar with Python. It creates a virtual machine [https://en.wikipedia.org/wiki/Virtual_machine] with metaknowledge installed, as well as the Python scientific stack numpy, scipy, and matplotlib, as well as a series of iPython notebooks for teaching metaknowledge and Python. Some notebooks are more complete than others.

The instructions for those familiar with the command line use the advanced instructions. Otherwise, it is probably best to use the student install.

Student Install

First, you need to install Vagrant [https://www.vagrantup.com/downloads.html] and VirtualBox [https://www.virtualbox.org/wiki/Downloads]. You need to do this before you can install metaknowledge.

Once Vagrant and VirtualBox are installed, download metaknowledge [https://github.com/networks-lab/metaknowledge/archive/master.zip]. Unzip the file. If you are unable to unzip the file, download 7-zip [http://www.7-zip.org/].

Open the directory metaknowledge and go to the vagrant subdirectory. Depending on your operating system, double click either: win_run, mac_run, or linux_run.

A window should pop up and say something like:

Bringing machine 'default' up with 'virtualbox' provider...
==> default: Box 'ubuntu/trusty64' could not be found. Attempting to find and install...
default: Box Provider: virtualbox
default: Box Version: >= 0

You will also see an estimate of how long the download and installation process will take (typically 20 minutes). All you have to do it wait for it to finish. When it is done, a browser window will appear at the showing the notebooks. If a browser window opens and it is showing No data received, hit refresh a couple times.

When you see a page with the following, you have installed everything successfully:

Lesson-1-Getting-Started
Lesson-2-Reading-Files
Lesson-3-Objects
...

To open the page again, just double click on which ever of win_run, mac_run, or linux_run you used. It should take less than a minute the second time.

Advanced Instructions

	Install Vagrant [https://www.vagrantup.com/downloads.html] and VirtualBox [https://www.virtualbox.org/wiki/Downloads].

	Clone the git repo <https://github.com/networks-lab/metaknowledge.git>.

	Make sure you are on the master branch.

	Go to the vagrant directory.

	Run vagrant up

	Once vagrant has finished go to http://localhost:1159/

What you are doing by running vagrant up is creating an Ubuntu VM and provisioning it with the script bootstrap, which is also in the vagrant directory. If you run vagrant up again it only starts the VM. To access the VM’s notebook once it is created:

	Go to the vagrant directory.

	Run vagrant up

	Once vagrant has finished go to http://localhost:1159/

You can also use vagrant ssh to ssh into the VM or vagrant provision to rerun bootstrap. If vagrant ssh does not work on your machine, you should be able to ssh into it at:

HostName: 127.0.0.1
Port: 2222
Username: vagrant
Password: vagrant

On Windows PuTTY [http://www.chiark.greenend.org.uk/~sgtatham/putty/] has been tested and works well.</p>

Install without Vagrant

Installing without Vagrant is done with setuptools [https://pypi.python.org/pypi/setuptools]. Go to the metaknowledge directory and run python3 setup.py install. This is the same version that is installed via pip plus some extra development command line tools.

Extending MK

Coming soon

Questions?

If you find bugs, or have questions, please write to:

Reid McIlroy-Young reid@reidmcy.com

John McLevey john.mclevey@uwaterloo.ca

License

metaknowledge is free and open source software, distributed under the GPL License.

Documentation

	Basic Example

	Overview

	Modules

	Classes

	Functions

	Exceptions

Basic Example

metaknoweldge is a Python3 package that simplifies bibliometric and computational analysis of Web of Science data.

	To load the data from files and make a network: ::

	>>> import metaknowledge as mk
>>> RC = mk.RecordCollection("records/")
>>> print(RC)
Collection of 33 records
>>> G = RC.coCiteNetwork(nodeType = 'journal')
Done making a co-citation network of files-from-records 1.1s
>>> print(len(G.nodes()))
223
>>> mk.writeGraph(G, "Cocitation-Network-of-Journals")

There is also a simple command line program called metaknowledge that comes with the package. It allows for creating networks without any need to know Python. More information about it can be found here.

Overview

This package can read the files downloaded from the Thomson Reuters’ Web of Science [https://webofknowledge.com] (WOS), Elsevier’s Scopus [https://www.scopus.com/], ProQuest [http://www.proquest.com/] and Medline files from PubMed [http://www.ncbi.nlm.nih.gov/pubmed]. These files contain entries on the metadata of scientific records, such as authors, title, and citations. metaknowledge can also read grants from various organizations including NSF and NSERC which are handled similarly to records.

The metaknowledge.RecordCollection class can take a path to one or more of these files load and parse them. The object is the main way for work to be done on multiple records. For each individual record it creates an instance of the metaknowledge.Record class that contains the results of the parsing of the record.

The files read by metaknowledge are a databases containing a series of tags (implicitly or explicitly), e.g. 'TI' is the title for WOS. Each tag has one or more values and metaknowledge can read them and extract useful information. As the tags differ between providers a small set of values can be accessed by special tags, the tags are listed in commonRecordFields. These special tags can act on the whole Record and as such may contain information provided by any number of other tags.

Citations are handled by a special Citation class. This class can parse the citations given by WOS and journals cited by Scopus and allows for better comparisons when they are used in graphs.

Note for those reading the docstrings metaknowledge’s docs are written in markdown and are processed to produce the documentation found at metaknowledge.readthedocs.io [https://metaknowledge.readthedocs.io/en/latest/], but you should have no problem reading them from the help function.

Modules

	contour
	Overview

	Functions

	grants
	Overview

	baseGrant

	cihrGrant

	medlineGrant

	nsercGrant

	nsfGrant

	scopusGrant

	journalAbbreviations
	Overview

	Functions

	medline
	Overview

	Functions

	Special Functions

	Tag Functions

	Backend

	proquest
	Overview

	Functions

	Special Functions

	Tag Functions

	Backend

	scopus
	Overview

	Functions

	Special Functions

	Tag Functions

	Backend

	WOS
	Overview

	Functions

	Help Functions

	Tag Functions

	Dict Functions

	Backend

contour

Overview

This is the only module that depends on anything besides networkx, it
depends on numpy [http://www.numpy.org/],
scipy [https://www.scipy.org/] and
matplotlib [http://matplotlib.org/].

Functions

	
metaknowledge.contour.plotting.graphDensityContourPlot(G, iters=50, layout=None, layoutScaleFactor=1, overlay=False, nodeSize=10, axisSamples=100, blurringFactor=0.1, contours=15, graphType='coloured')

	Creates a 3D plot giving the density of nodes on a 2D plane, as a
surface in 3D.

Most of the options are for tweaking the final appearance. layout and
layoutScaleFactor allow a pre-layout graph to be provided. If a layout
is not provided the
networkx.spring_layout() [https://networkx.github.io/documentation/latest/reference/generated/networkx.drawing.layout.spring_layout.html]
is used after iters iterations. Then, once the graph has been laid out
a grid of axisSamples cells by axisSamples cells is overlaid and the
number of nodes in each cell is determined, a gaussian blur is then
applied with a sigma of blurringFactor. This then forms a surface in 3
dimensions, which is then plotted.

If you find the resultant image looks too banded raise the the
contours number to ~50.

Parameters

G : networkx Graph

The graph to be plotted

iters : optional [int]

Default 50, the number of iterations for the spring layout if
layout is not provided.

layout : optional [networkx layout dictionary]

Default None, if provided will be used as a layout of the graph,
the maximum distance from the origin along any axis must also given
as layoutScaleFactor, which is by default 1.

layoutScaleFactor : optional [double]

Default 1, The maximum distance from the origin allowed along
any axis given by layout, i.e. the layout must fit in a square
centered at the origin with side lengths 2 * layoutScaleFactor

overlay : optional [bool]

Default False, if True the 2D graph will be plotted on the
X-Y plane at Z = 0.

nodeSize : optional [double]

Default 10, the size of the nodes dawn in the overlay

axisSamples : optional [int]

Default 100, the number of cells used along each axis for sampling.
A larger number will mean a lower average density.

blurringFactor : optional [double]

Default 0.1, the sigma value used for smoothing the surface
density. The higher this number the smoother the surface.

contours : optional [int]

Default 15, the number of different heights drawn. If this number is
low the resultant image will look very banded. It is recommended
this be raised above 50 if you want your images to look good,
Warning this will make them much slower to generate and interact
with.

graphType : optional [str]

Default 'coloured', if 'coloured' the image will have a
destiny based colourization applied, the only other option is
'solid' which removes the colourization.

	
metaknowledge.contour.plotting.quickVisual(G, showLabel=False)

	Just makes a simple matplotlib figure and displays it, with each node
coloured by its type. You can add labels with showLabel. This looks a
bit nicer than the one provided my networkx’s defaults.

Parameters

showLabel : optional [bool]

Default False, if True labels will be added to the nodes
giving their IDs.

grants

Overview

baseGrant

	
class metaknowledge.grants.baseGrant.FallbackGrant(original, grantdDict, sFile='', sLine=0)

	A subclass of Grant, it
has the same attributes and is returned from the fall back constructor
for grants.

	
class metaknowledge.grants.baseGrant.Grant(original, grantdDict, idValue, bad, error, sFile='', sLine=0)

	
	
getInstitutions(tags=None, seperator=';', _getTag=False)

	Returns a list of the names of institutions. This is done by looking (in
order) for any of fields in tags and splitting the strings on
seperator (in case of multiple institutions). If no strings are found
an empty list will be returned.

Note for some Grants getInstitutions has been overwritten and will
ignore the arguments and simply provide the investigators.

Parameters

tags : optional list[str]

A list of the tags to look for institutions in

seperator : optional str

The string that separators each institutions name within the column

Returns

list [str]

A list of all the found institution’s names

	
getInvestigators(tags=None, seperator=';', _getTag=False)

	Returns a list of the names of investigators. This is done by looking
(in order) for any of fields in tags and splitting the strings on
seperator. If no strings are found an empty list will be returned.

Note for some Grants getInvestigators has been overwritten and
will ignore the arguments and simply provide the investigators.

Parameters

tags : optional list[str]

A list of the tags to look for investigators in

seperator : optional str

The string that separators each investigators name within the column

Returns

list [str]

A list of all the found investigator’s names

	
update(other)

	Adds all the tag-entry pairs from other to the Grant. If there is
a conflict other takes precedence.

Parameters

other : Grant

Another Grant of the same type as self

	
metaknowledge.grants.baseGrant.csvAndLinesReader(enumeratedFile, *csvArgs, **csvKwargs)

	

	
metaknowledge.grants.baseGrant.isFallbackGrantFile(fileName, useFileName=True, encoding='latin-1', dialect='excel')

	

	
metaknowledge.grants.baseGrant.parserFallbackGrantFile(fileName, encoding='latin-1', dialect='excel')

	

cihrGrant

	
class metaknowledge.grants.cihrGrant.CIHRGrant(original, grantdDict, sFile, sLine)

	

	
metaknowledge.grants.cihrGrant.isCIHRfile(fileName, useFileName=True)

	

	
metaknowledge.grants.cihrGrant.parserCIHRfile(fileName)

	

medlineGrant

	
class metaknowledge.grants.medlineGrant.MedlineGrant(grantString)

	

nsercGrant

	
class metaknowledge.grants.nsercGrant.NSERCGrant(original, grantdDict, sFile, sLine)

	
	
getInstitutions(tags=None, seperator=';', _getTag=False)

	Returns a list with the names of the institution. The optional arguments
are ignored

Returns

list [str]

A list with 1 entry the name of the institution

	
getInvestigators(tags=None, seperator=';', _getTag=False)

	Returns a list of the names of investigators. The optional arguments are
ignored.

Returns

list [str]

A list of all the found investigator’s names

	
update(other)

	Adds all the tag-entry pairs from other to the Grant. If there is
a conflict other takes precedence.

Parameters

other : Grant

Another Grant of the same type as self

	
metaknowledge.grants.nsercGrant.isNSERCfile(fileName, useFileName=True)

	

	
metaknowledge.grants.nsercGrant.parserNSERCfile(fileName)

	

nsfGrant

	
class metaknowledge.grants.nsfGrant.NSFGrant(grantdDict, sFile)

	
	
getInstitutions(tags=None, seperator=';', _getTag=False)

	Returns a list with the names of the institution. The optional arguments
are ignored

Returns

list [str]

A list with 1 entry the name of the institution

	
getInvestigators(tags=None, seperator=';', _getTag=False)

	Returns a list of the names of investigators. The optional arguments are
ignored.

Returns

list [str]

A list of all the found investigator’s names

	
metaknowledge.grants.nsfGrant.isNSFfile(fileName, useFileName=True)

	

	
metaknowledge.grants.nsfGrant.parserNSFfile(fileName)

	

scopusGrant

	
class metaknowledge.grants.scopusGrant.ScopusGrant(grantString)

	

journalAbbreviations

Overview

This module handles the abbreviations, known as J29 abbreviations and
given by the J9 tag in WOS Records and for journal titles that WOS
employs in citations.

The citations provided by WOS used abbreviated journal titles instead of
the full names. The full list of abbreviations can be found at a series
pages divided by letter starting at
images.webofknowledge.com/WOK46/help/WOS/A_abrvjt.html [http://images.webofknowledge.com/WOK46/help/WOS/A_abrvjt.html].
The function
updatej9DB()
is used to scape and parse the pages, it must be run without error
before the other features can be used. metaknowledge. If the database
is requested by getj9dict(), which is what
Citations
use, and the database is not found or is corrupted then
updatej9DB()
will be run to download the database if this fails an mkException
will be raised, the download and parsing usually takes less than a
second on a good internet connection.

The other functions of the module are for manually adding and removing
abbreviations from the database. It is recommended that this be done
with the command-line tool metaknowledge instead of with a script.

Functions

	
metaknowledge.journalAbbreviations.backend.addToDB(abbr=None, dbname='manualj9Abbreviations')

	Adds abbr to the database of journals. The database is kept separate
from the one scraped from WOS, this supersedes it. The database by
default is stored with the WOS one and the name is given by
metaknowledge.journalAbbreviations.manualDBname. To create an empty
database run addToDB without an abbr argument.

Parameters

abbr : optional [str or dict[str : str]]

The journal abbreviation to be added to the database, it can either
be a single string in which case that string will be added with its
self as the full name, or a dict can be given with the abbreviations
as keys and their names as strings, use pipes ('|') to separate
multiple names. Note, if the empty string is given as a name the
abbreviation will be considered manually excluded, i.e. having
excludeFromDB() run on it.

dbname : optional [str]

The name of the database file, default is
metaknowledge.journalAbbreviations.manualDBname.

	
metaknowledge.journalAbbreviations.backend.excludeFromDB(abbr=None, dbname='manualj9Abbreviations')

	Marks abbr to be excluded the database of journals. The database is
kept separate from the one scraped from WOS, this supersedes it. The
database by default is stored with the WOS one and the name is given by
metaknowledge.journalAbbreviations.manualDBname. To create an empty
database run
addToDB()
without an abbr argument.

Parameters

abbr : optional [str or tuple[str] or list[str]

The journal abbreviation to be excluded from the database, it can
either be a single string in which case that string will be exclude
or a list/tuple of strings can be given with the abbreviations.

dbname : optional [str]

The name of the database file, default is
metaknowledge.journalAbbreviations.manualDBname.

	
metaknowledge.journalAbbreviations.backend.getj9dict(dbname='j9Abbreviations', manualDB='manualj9Abbreviations', returnDict='both')

	Returns the dictionary of journal abbreviations mapping to a list of the
associated journal names. By default the local database is used. The
database is in the file dbname in the same directory as this source
file

Parameters

dbname : optional [str]

The name of the downloaded database file, the default is determined
at run time. It is recommended that this remain untouched.

manualDB : optional [str]

The name of the manually created database file, the default is
determined at run time. It is recommended that this remain
untouched.

returnDict : optional [str]

default 'both', can be used to get both databases or only one
with 'WOS' or 'manual'.

	
metaknowledge.journalAbbreviations.backend.j9urlGenerator(nameDict=False)

	How to get all the urls for the WOS Journal Title Abbreviations. Each is
varies by only a few characters. These are the currently in use urls
they may change.

They are of the form:

“https://images.webofknowledge.com/images/help/WOS/%7BVAL%7D_abrvjt.html”

Where {VAL} is a capital letter or the string “0-9”

Returns

list[str]

A list of all the url’s strings

	
metaknowledge.journalAbbreviations.backend.updatej9DB(dbname='j9Abbreviations', saveRawHTML=False)

	Updates the database of Journal Title Abbreviations. Requires an
internet connection. The data base is saved relative to the source file
not the working directory.

Parameters

dbname : optional [str]

The name of the database file, default is “j9Abbreviations.db”

saveRawHTML : optional [bool]

Determines if the original HTML of the pages is stored, default
False. If True they are saved in a directory inside j9Raws
begining with todays date.

medline

Overview

These are the functions used to process medline (pubmed) files at the
backend. They are meant for use internal use by metaknowledge.

Functions

	
metaknowledge.medline.medlineHandlers.isMedlineFile(infile, checkedLines=2)

	Determines if infile is the path to a Medline file. A file is
considerd to be a Medline file if it has the correct encoding
(latin-1) and within the first checkedLines a line starts with
"PMID- ".

Parameters

infile : str

The path to the targets file

checkedLines : optional [int]

default 2, the number of lines to check for the header

Returns

bool

True if the file is a Medline file

	
metaknowledge.medline.medlineHandlers.medlineParser(pubFile)

	Parses a medline file, pubFile, to extract the individual entries as
MedlineRecords.

A medline file is a series of entries, each entry is a series of tags. A
tag is a 2 to 4 character string each tag is padded with spaces on the
left to make it 4 characters which is followed by a dash and a space
('- '). Everything after the tag and on all lines after it not
starting with a tag is considered associated with the tag. Each entry’s
first tag is PMID, so a first line looks something like
PMID- 26524502. Entries end with a single blank line.

Parameters

pubFile : str

A path to a valid medline file, use
isMedlineFile
to verify

Returns

set[MedlineRecord]

Records for each of the entries

Special Functions

	
metaknowledge.medline.tagProcessing.specialFunctions.DOI(R)

	

	
metaknowledge.medline.tagProcessing.specialFunctions.address(R)

	Gets the first address of the first author

	
metaknowledge.medline.tagProcessing.specialFunctions.beginningPage(R)

	As pages may not be given as numbers this is the most accurate this
function can be

	
metaknowledge.medline.tagProcessing.specialFunctions.month(R)

	

	
metaknowledge.medline.tagProcessing.specialFunctions.volume(R)

	Returns the first number/word of the volume field, hopefully trimming
something like: '49 Suppl 20' to 49

	
metaknowledge.medline.tagProcessing.specialFunctions.year(R)

	

Tag Functions

	
metaknowledge.medline.tagProcessing.tagFunctions.AB(val)

	
Abstract

basically a one liner after parsing

	
metaknowledge.medline.tagProcessing.tagFunctions.AD(val)

	
Affiliation

Undoing what the parser does then splitting at the semicolons and
dropping newlines extra fitlering is required beacuse some AD’s end
with a semicolon

	
metaknowledge.medline.tagProcessing.tagFunctions.AID(val)

	
ArticleIdentifier

The given values do not require any work

	
metaknowledge.medline.tagProcessing.tagFunctions.AU(val)

	Author

	
metaknowledge.medline.tagProcessing.tagFunctions.AUID(val)

	
AuthorIdentifier

one line only just need to undo the parser’s effects

	
metaknowledge.medline.tagProcessing.tagFunctions.BTI(val)

	BookTitle

	
metaknowledge.medline.tagProcessing.tagFunctions.CI(val)

	CopyrightInformation

	
metaknowledge.medline.tagProcessing.tagFunctions.CIN(val)

	CommentIn

	
metaknowledge.medline.tagProcessing.tagFunctions.CN(val)

	CorporateAuthor

	
metaknowledge.medline.tagProcessing.tagFunctions.CRDT(val)

	CreateDate

	
metaknowledge.medline.tagProcessing.tagFunctions.CRF(val)

	CorrectedRepublishedFrom

	
metaknowledge.medline.tagProcessing.tagFunctions.CRI(val)

	CorrectedRepublishedIn

	
metaknowledge.medline.tagProcessing.tagFunctions.CTI(val)

	CollectionTitle

	
metaknowledge.medline.tagProcessing.tagFunctions.DA(val)

	DateCreated

	
metaknowledge.medline.tagProcessing.tagFunctions.DCOM(val)

	DateCompleted

	
metaknowledge.medline.tagProcessing.tagFunctions.DDIN(val)

	DatasetIn

	
metaknowledge.medline.tagProcessing.tagFunctions.DEP(val)

	DateElectronicPublication

	
metaknowledge.medline.tagProcessing.tagFunctions.DP(val)

	DatePublication

	
metaknowledge.medline.tagProcessing.tagFunctions.DRIN(val)

	DatasetUseReportedIn

	
metaknowledge.medline.tagProcessing.tagFunctions.EDAT(val)

	EntrezDate

	
metaknowledge.medline.tagProcessing.tagFunctions.EFR(val)

	ErratumFor

	
metaknowledge.medline.tagProcessing.tagFunctions.EIN(val)

	ErratumIn

	
metaknowledge.medline.tagProcessing.tagFunctions.EN(val)

	Edition

	
metaknowledge.medline.tagProcessing.tagFunctions.FAU(val)

	FullAuthor

	
metaknowledge.medline.tagProcessing.tagFunctions.FED(val)

	Editor

	
metaknowledge.medline.tagProcessing.tagFunctions.FIR(val)

	InvestigatorFull

	
metaknowledge.medline.tagProcessing.tagFunctions.FPS(val)

	FullPersonalNameSubject

	
metaknowledge.medline.tagProcessing.tagFunctions.GN(val)

	GeneralNote

	
metaknowledge.medline.tagProcessing.tagFunctions.GR(val)

	GrantNumber

	
metaknowledge.medline.tagProcessing.tagFunctions.GS(val)

	GeneSymbol

	
metaknowledge.medline.tagProcessing.tagFunctions.IP(val)

	Issue

	
metaknowledge.medline.tagProcessing.tagFunctions.IR(val)

	Investigator

	
metaknowledge.medline.tagProcessing.tagFunctions.IRAD(val)

	InvestigatorAffiliation

	
metaknowledge.medline.tagProcessing.tagFunctions.IS(val)

	ISSN

	
metaknowledge.medline.tagProcessing.tagFunctions.ISBN(val)

	

	
metaknowledge.medline.tagProcessing.tagFunctions.JID(val)

	NLMID

	
metaknowledge.medline.tagProcessing.tagFunctions.JT(val)

	
JournalTitle

One line only

	
metaknowledge.medline.tagProcessing.tagFunctions.LA(val)

	Language

	
metaknowledge.medline.tagProcessing.tagFunctions.LID(val)

	LocationIdentifier

	
metaknowledge.medline.tagProcessing.tagFunctions.LR(val)

	DateLastRevised

	
metaknowledge.medline.tagProcessing.tagFunctions.MH(val)

	MeSHTerms

	
metaknowledge.medline.tagProcessing.tagFunctions.MHDA(val)

	MeSHDate

	
metaknowledge.medline.tagProcessing.tagFunctions.MID(val)

	ManuscriptIdentifier

	
metaknowledge.medline.tagProcessing.tagFunctions.NM(val)

	SubstanceName

	
metaknowledge.medline.tagProcessing.tagFunctions.OABL(val)

	OtherAbstract

	
metaknowledge.medline.tagProcessing.tagFunctions.OCI(val)

	OtherCopyright

	
metaknowledge.medline.tagProcessing.tagFunctions.OID(val)

	OtherID

	
metaknowledge.medline.tagProcessing.tagFunctions.ORI(val)

	OriginalReportIn

	
metaknowledge.medline.tagProcessing.tagFunctions.OT(val)

	
OtherTerm

Nothing needs to be done

	
metaknowledge.medline.tagProcessing.tagFunctions.OTO(val)

	
OtherTermOwner

one line field

	
metaknowledge.medline.tagProcessing.tagFunctions.OWN(val)

	Owner

	
metaknowledge.medline.tagProcessing.tagFunctions.PG(val)

	
Pagination

all pagination seen so far seems to be only on one line

	
metaknowledge.medline.tagProcessing.tagFunctions.PHST(val)

	PublicationHistoryStatus

	
metaknowledge.medline.tagProcessing.tagFunctions.PL(val)

	PlacePublication

	
metaknowledge.medline.tagProcessing.tagFunctions.PMC(val)

	PubMedCentralIdentifier

	
metaknowledge.medline.tagProcessing.tagFunctions.PMCR(val)

	PubMedCentralRelease

	
metaknowledge.medline.tagProcessing.tagFunctions.PMID(val)

	PubMedUniqueIdentifier

	
metaknowledge.medline.tagProcessing.tagFunctions.PRIN(val)

	PartialRetractionIn

	
metaknowledge.medline.tagProcessing.tagFunctions.PROF(val)

	PartialRetractionOf

	
metaknowledge.medline.tagProcessing.tagFunctions.PS(val)

	PersonalNameSubject

	
metaknowledge.medline.tagProcessing.tagFunctions.PST(val)

	PublicationStatus

	
metaknowledge.medline.tagProcessing.tagFunctions.PT(val)

	PublicationType

	
metaknowledge.medline.tagProcessing.tagFunctions.PUBM(val)

	PublishingModel

	
metaknowledge.medline.tagProcessing.tagFunctions.RF(val)

	NumberReferences

	
metaknowledge.medline.tagProcessing.tagFunctions.RIN(val)

	RetractionIn

	
metaknowledge.medline.tagProcessing.tagFunctions.RN(val)

	RegistryNumber

	
metaknowledge.medline.tagProcessing.tagFunctions.ROF(val)

	RetractionOf

	
metaknowledge.medline.tagProcessing.tagFunctions.RPF(val)

	RepublishedFrom

	
metaknowledge.medline.tagProcessing.tagFunctions.RPI(val)

	RepublishedIn

	
metaknowledge.medline.tagProcessing.tagFunctions.SB(val)

	Subset

	
metaknowledge.medline.tagProcessing.tagFunctions.SFM(val)

	SpaceFlightMission

	
metaknowledge.medline.tagProcessing.tagFunctions.SI(val)

	SecondarySourceID

	
metaknowledge.medline.tagProcessing.tagFunctions.SO(val)

	Source

	
metaknowledge.medline.tagProcessing.tagFunctions.SPIN(val)

	SummaryForPatients

	
metaknowledge.medline.tagProcessing.tagFunctions.STAT(val)

	Status

	
metaknowledge.medline.tagProcessing.tagFunctions.TA(val)

	
JournalTitleAbbreviation

One line only

	
metaknowledge.medline.tagProcessing.tagFunctions.TI(val)

	
Title

only one per record

	
metaknowledge.medline.tagProcessing.tagFunctions.TT(val)

	TransliteratedTitle

	
metaknowledge.medline.tagProcessing.tagFunctions.UIN(val)

	UpdateIn

	
metaknowledge.medline.tagProcessing.tagFunctions.UOF(val)

	UpdateOf

	
metaknowledge.medline.tagProcessing.tagFunctions.VI(val)

	
Volume

The volumes as a string as volume is single line

	
metaknowledge.medline.tagProcessing.tagFunctions.VTI(val)

	VolumeTitle

Backend

	
class metaknowledge.medline.recordMedline.MedlineRecord(inRecord, sFile='', sLine=0)

	Bases: metaknowledge.mkRecord.ExtendedRecord

Class for full Medline(Pubmed) entries.

This class is an
ExtendedRecord
capable of generating its own id number. You should not create them
directly, but instead use
medlineParser()
on a medline file.

	
authGenders(countsOnly=False, fractionsMode=False, _countsTuple=False)

	Creates a dict mapping 'Male', 'Female' and 'Unknown' to
lists of the names of all the authors.

Parameters

countsOnly : optional bool

Default False, if True the counts (lengths of the lists)
will be given instead of the lists of names

fractionsMode : optional bool

Default False, if True the fraction counts (lengths of the
lists divided by the total number of authors) will be given instead
of the lists of names. This supersedes countsOnly

Returns

dict[str:str or int]

The mapping of genders to author’s names or counts

	
authors

	

	
bibString(maxLength=1000, WOSMode=False, restrictedOutput=False, niceID=True)

	Makes a string giving the Record as a bibTex entry. If the Record is of
a journal article (PT J) the bibtext type is set to 'article',
otherwise it is set to 'misc'. The ID of the entry is the WOS number
and all the Record’s fields are given as entries with their long names.

Note This is not meant to be used directly with LaTeX none of the
special characters have been escaped and there are a large number of
unnecessary fields provided. niceID and maxLength have been provided
to make conversions easier.

Note Record entries that are lists have their values seperated with
the string ' and '

Parameters

maxLength : optional [int]

default 1000, The max length for a continuous string. Most bibTex
implementation only allow string to be up to 1000 characters
(source [https://www.cs.arizona.edu/~collberg/Teaching/07.231/BibTeX/bibtex.html]),
this splits them up into substrings then uses the native string
concatenation (the '#' character) to allow for longer strings

WOSMode : optional [bool]

default False, if True the data produced will be unprocessed
and use double curly braces. This is the style WOS produces bib
files in and mostly macthes that.

restrictedOutput : optional [bool]

default False, if True the tags output will be limited to
tose found in metaknowledge.commonRecordFields

niceID : optional [bool]

default True, if True the ID used will be derived from the
authors, publishing date and title, if False it will be the UT
tag

Returns

str

The bibTex string of the Record

	
copy()

	Correctly copies the Record

Returns

Record

A completely decoupled copy of the original

	
createCitation(multiCite=False)

	Creates a citation string, using the same format as other WOS citations,
for the Record by reading the
relevant special tags ('year', 'J9', 'volume',
'beginningPage', 'DOI') and using it to create a
Citation object.

Parameters

multiCite : optional [bool]

Default False, if True a tuple of Citations is returned with
each having a different one of the records authors as the author

Returns

Citation

A Citation
object containing a citation for the Record.

	
encoding()

	An abstractmethod, gives the encoding string of the record.

Returns

str

The encoding

	
get(tag, default=None, raw=False)

	Allows access to the raw values or is an Exception safe wrapper to
__getitem__.

Parameters

tag : str

The requested tag

default : optional [Object]

Default None, the object returned when tag is not found

raw : optional [bool]

Default False, if True the unprocessed value of tag is
returned

Returns

Object

The processed value of tag or default

	
static getAltName(tag)

	An abstractmethod, gives the alternate name of tag or None

Parameters

tag : str

The requested tag

Returns

str

The alternate name of tag or None

	
getCitations(field=None, values=None, pandasFriendly=True)

	Creates a pandas ready dict with each row a different citation and
columns containing the original string, year, journal and author’s name.

There are also options to filter the output citations with field and
values

Parameters

field : optional str

Default None, if given all citations missing the named field
will be dropped.

values : optional str or list[str]

Default None, if field is also given only those citations with
one of the strings given in values will be included.

e.g. to get only citations from 1990 or 1991:
field = year, values = [1991, 1990]

pandasFriendly : optional bool

Default True, if False a list of the citations will be
returned instead of the more complicated pandas dict

Returns

dict

A pandas ready dict with all the citations

	
id

	

	
items(raw=False)

	Like items for dicts but with a raw option

Parameters

raw : optional [bool]

Default False, if True the KeysView contains the raw
values as the values

Returns

KeysView

The key-value pairs of the record

	
keys() → a set-like object providing a view on D's keys

	

	
sourceFile

	

	
sourceLine

	

	
specialFuncs(key)

	An abstractmethod, process the special tag, key using the whole
Record

Parameters

key : str

One of the special tags: 'authorsFull', 'keywords',
'grants', 'j9', 'authorsShort', 'volume',
'selfCitation', 'citations', 'address', 'abstract',
'title', 'month', 'year', 'journal',
'beginningPage' and 'DOI'

Returns

The processed value of key

	
subDict(tags, raw=False)

	Creates a dict of values of tags from the Record. The tags are the
keys and the values are the values. If the tag is missing the value will
be None.

Parameters

tags : list[str]

The list of tags requested

raw : optional [bool]

default False if True the retuned values of the dict will be
unprocessed

Returns

dict

A dictionary with the keys tags and the values from the record

	
static tagProcessingFunc(tag)

	An abstractmethod, gives the function for processing tag

Parameters

tag : optional [str]

The tag in need of processing

Returns

function

The function to process the raw tag

	
title

	

	
values(raw=False)

	Like values for dicts but with a raw option

Parameters

raw : optional [bool]

Default False, if True the ValuesView contains the raw
values

Returns

ValuesView

The values of the record

	
writeRecord(f)

	This is nearly identical to the original the FAU tag is the only tag not
writen in the same place, doing so would require changing the parser and
lots of extra logic.

	
metaknowledge.medline.recordMedline.medlineRecordParser(record)

	The parser
`MedlineRecord <../classes/MedlineRecord.html#metaknowledge.medline.MedlineRecord>`__
use. This takes an entry from
medlineParser()
and parses it a part of the creation of a MedlineRecord.

Parameters

record : enumerate object

a file wrapped by enumerate()

Returns

collections.OrderedDict

An ordered dictionary of the key-vaue pairs in the entry

proquest

Overview

These are the functions used to process medline (pubmed) files at the
backend. They are meant for use internal use by metaknowledge.

Functions

	
metaknowledge.proquest.proQuestHandlers.isProQuestFile(infile, checkedLines=2)

	Determines if infile is the path to a ProQuest file. A file is
considered to be a Proquest file if it has the correct encoding
(utf-8) and within the first checkedLines the following starts.

__

Report Information from ProQuest

Parameters

infile : str

The path to the targets file

checkedLines : optional [int]

default 2, the number of lines to check for the header

Returns

bool

True if the file is a valid ProQuest file

	
metaknowledge.proquest.proQuestHandlers.proQuestParser(proFile)

	Parses a ProQuest file, proFile, to extract the individual entries.

A ProQuest file has three sections, first a list of the contained
entries, second the full metadata and finally a bibtex formatted entry
for the record. This parser only uses the first two as the bibtex
contains no information the second section does not. Also, the first
section is only used to verify the second section. The returned
ProQuestRecord
contains the data from the second section, with the same key strings as
ProQuest uses and the unlabeled sections are called in order,
'Name', 'Author' and 'url'.

Parameters

proFile : str

A path to a valid ProQuest file, use
isProQuestFile
to verify

Returns

set[ProQuestRecord]

Records for each of the entries

Special Functions

Tag Functions

	
metaknowledge.proquest.tagProcessing.tagFunctions.proQuestClassification(value)

	

	
metaknowledge.proquest.tagProcessing.tagFunctions.proQuestIdentifier_Keyword(value)

	

	
metaknowledge.proquest.tagProcessing.tagFunctions.proQuestSubject(value)

	

	
metaknowledge.proquest.tagProcessing.tagFunctions.proQuestTagToFunc(tag)

	Takes a tag string, tag, and returns the processing function for its
data. If their is not a predefined function returns the identity
function (lambda x : x).

Parameters

tag : str

The requested tag

Returns

function

A function to process the tag’s data

Backend

	
class metaknowledge.proquest.recordProQuest.ProQuestRecord(inRecord, recNum=None, sFile='', sLine=0)

	Bases: metaknowledge.mkRecord.ExtendedRecord

Class for full ProQuest entries.

This class is an
ExtendedRecord
capable of generating its own id number. You should not create them
directly, but instead use
proQuestParser()
on a ProQuest file.

	
authGenders(countsOnly=False, fractionsMode=False, _countsTuple=False)

	Creates a dict mapping 'Male', 'Female' and 'Unknown' to
lists of the names of all the authors.

Parameters

countsOnly : optional bool

Default False, if True the counts (lengths of the lists)
will be given instead of the lists of names

fractionsMode : optional bool

Default False, if True the fraction counts (lengths of the
lists divided by the total number of authors) will be given instead
of the lists of names. This supersedes countsOnly

Returns

dict[str:str or int]

The mapping of genders to author’s names or counts

	
authors

	

	
bibString(maxLength=1000, WOSMode=False, restrictedOutput=False, niceID=True)

	Makes a string giving the Record as a bibTex entry. If the Record is of
a journal article (PT J) the bibtext type is set to 'article',
otherwise it is set to 'misc'. The ID of the entry is the WOS number
and all the Record’s fields are given as entries with their long names.

Note This is not meant to be used directly with LaTeX none of the
special characters have been escaped and there are a large number of
unnecessary fields provided. niceID and maxLength have been provided
to make conversions easier.

Note Record entries that are lists have their values seperated with
the string ' and '

Parameters

maxLength : optional [int]

default 1000, The max length for a continuous string. Most bibTex
implementation only allow string to be up to 1000 characters
(source [https://www.cs.arizona.edu/~collberg/Teaching/07.231/BibTeX/bibtex.html]),
this splits them up into substrings then uses the native string
concatenation (the '#' character) to allow for longer strings

WOSMode : optional [bool]

default False, if True the data produced will be unprocessed
and use double curly braces. This is the style WOS produces bib
files in and mostly macthes that.

restrictedOutput : optional [bool]

default False, if True the tags output will be limited to
tose found in metaknowledge.commonRecordFields

niceID : optional [bool]

default True, if True the ID used will be derived from the
authors, publishing date and title, if False it will be the UT
tag

Returns

str

The bibTex string of the Record

	
copy()

	Correctly copies the Record

Returns

Record

A completely decoupled copy of the original

	
createCitation(multiCite=False)

	Creates a citation string, using the same format as other WOS citations,
for the Record by reading the
relevant special tags ('year', 'J9', 'volume',
'beginningPage', 'DOI') and using it to create a
Citation object.

Parameters

multiCite : optional [bool]

Default False, if True a tuple of Citations is returned with
each having a different one of the records authors as the author

Returns

Citation

A Citation
object containing a citation for the Record.

	
encoding()

	An abstractmethod, gives the encoding string of the record.

Returns

str

The encoding

	
get(tag, default=None, raw=False)

	Allows access to the raw values or is an Exception safe wrapper to
__getitem__.

Parameters

tag : str

The requested tag

default : optional [Object]

Default None, the object returned when tag is not found

raw : optional [bool]

Default False, if True the unprocessed value of tag is
returned

Returns

Object

The processed value of tag or default

	
static getAltName(tag)

	An abstractmethod, gives the alternate name of tag or None

Parameters

tag : str

The requested tag

Returns

str

The alternate name of tag or None

	
getCitations(field=None, values=None, pandasFriendly=True)

	Creates a pandas ready dict with each row a different citation and
columns containing the original string, year, journal and author’s name.

There are also options to filter the output citations with field and
values

Parameters

field : optional str

Default None, if given all citations missing the named field
will be dropped.

values : optional str or list[str]

Default None, if field is also given only those citations with
one of the strings given in values will be included.

e.g. to get only citations from 1990 or 1991:
field = year, values = [1991, 1990]

pandasFriendly : optional bool

Default True, if False a list of the citations will be
returned instead of the more complicated pandas dict

Returns

dict

A pandas ready dict with all the citations

	
id

	

	
items(raw=False)

	Like items for dicts but with a raw option

Parameters

raw : optional [bool]

Default False, if True the KeysView contains the raw
values as the values

Returns

KeysView

The key-value pairs of the record

	
keys() → a set-like object providing a view on D's keys

	

	
sourceFile

	

	
sourceLine

	

	
specialFuncs(key)

	An abstractmethod, process the special tag, key using the whole
Record

Parameters

key : str

One of the special tags: 'authorsFull', 'keywords',
'grants', 'j9', 'authorsShort', 'volume',
'selfCitation', 'citations', 'address', 'abstract',
'title', 'month', 'year', 'journal',
'beginningPage' and 'DOI'

Returns

The processed value of key

	
subDict(tags, raw=False)

	Creates a dict of values of tags from the Record. The tags are the
keys and the values are the values. If the tag is missing the value will
be None.

Parameters

tags : list[str]

The list of tags requested

raw : optional [bool]

default False if True the retuned values of the dict will be
unprocessed

Returns

dict

A dictionary with the keys tags and the values from the record

	
static tagProcessingFunc(tag)

	An abstractmethod, gives the function for processing tag

Parameters

tag : optional [str]

The tag in need of processing

Returns

function

The function to process the raw tag

	
title

	

	
values(raw=False)

	Like values for dicts but with a raw option

Parameters

raw : optional [bool]

Default False, if True the ValuesView contains the raw
values

Returns

ValuesView

The values of the record

	
writeRecord(infile)

	An abstractmethod, writes the record in its original form to
infile

Parameters

infile : writable file

The file to be written to

	
metaknowledge.proquest.recordProQuest.proQuestRecordParser(enRecordFile, recNum)

	The parser
ProQuestRecords
use. This takes an entry from
proQuestParser()
and parses it a part of the creation of a ProQuestRecord.

Parameters

enRecordFile : enumerate object

a file wrapped by enumerate()

recNum : int

The number given to the entry in the first section of the ProQuest
file

Returns

collections.OrderedDict

An ordered dictionary of the key-vaue pairs in the entry

scopus

Overview

Functions

	
metaknowledge.scopus.scopusHandlers.isScopusFile(infile, checkedLines=2, maxHeaderDiff=3)

	Determines if infile is the path to a Scopus csv file. A file is
considerd to be a Scopus file if it has the correct encoding (utf-8
with BOM (Byte Order Mark)) and within the first checkedLines a line
contains the complete header, the list of all header entries in order is
found in `scopus.scopusHeader <#metaknowledge.scopus>`__.

Note this is for csv files not plain text files from scopus, plain
text files are not complete.

Parameters

infile : str

The path to the targets file

checkedLines : optional [int]

default 2, the number of lines to check for the header

maxHeaderDiff : optional [int]

default 3, maximum number of different entries in the potetial file
from the current known header metaknowledge.scopus.scopusHeader,
if exceeded an False will be returned

Returns

bool

True if the file is a Scopus csv file

	
metaknowledge.scopus.scopusHandlers.scopusParser(scopusFile)

	Parses a scopus file, scopusFile, to extract the individual lines as
ScopusRecords.

A Scopus file is a csv (Comma-separated values) with a complete header,
see `scopus.scopusHeader <#metaknowledge.scopus>`__ for the entries,
and each line after it containing a record’s entry. The string valued
entries are quoted with double quotes which means double quotes inside
them can cause issues, see
scopusRecordParser()
for more information.

Parameters

scopusFile : str

A path to a valid scopus file, use
isScopusFile()
to verify

Returns

set[ScopusRecord]

Records for each of the entries

Special Functions

Tag Functions

	
metaknowledge.scopus.tagProcessing.tagFunctions.citeValue(val)

	

	
metaknowledge.scopus.tagProcessing.tagFunctions.commaSpaceSeperated(val)

	

	
metaknowledge.scopus.tagProcessing.tagFunctions.grantValue(val)

	

	
metaknowledge.scopus.tagProcessing.tagFunctions.integralValue(val)

	

	
metaknowledge.scopus.tagProcessing.tagFunctions.semicolonSeperated(val)

	

	
metaknowledge.scopus.tagProcessing.tagFunctions.semicolonSpaceSeperated(val)

	

	
metaknowledge.scopus.tagProcessing.tagFunctions.stringValue(val)

	

Backend

	
class metaknowledge.scopus.recordScopus.ScopusRecord(inRecord, sFile='', sLine=0, header=None)

	Bases: metaknowledge.mkRecord.ExtendedRecord

Class for full Scopus entries.

This class is an
ExtendedRecord
capable of generating its own id number. You should not create them
directly, but instead use
scopusParser()
on a scopus CSV file.

	
authGenders(countsOnly=False, fractionsMode=False, _countsTuple=False)

	Creates a dict mapping 'Male', 'Female' and 'Unknown' to
lists of the names of all the authors.

Parameters

countsOnly : optional bool

Default False, if True the counts (lengths of the lists)
will be given instead of the lists of names

fractionsMode : optional bool

Default False, if True the fraction counts (lengths of the
lists divided by the total number of authors) will be given instead
of the lists of names. This supersedes countsOnly

Returns

dict[str:str or int]

The mapping of genders to author’s names or counts

	
authors

	

	
bibString(maxLength=1000, WOSMode=False, restrictedOutput=False, niceID=True)

	Makes a string giving the Record as a bibTex entry. If the Record is of
a journal article (PT J) the bibtext type is set to 'article',
otherwise it is set to 'misc'. The ID of the entry is the WOS number
and all the Record’s fields are given as entries with their long names.

Note This is not meant to be used directly with LaTeX none of the
special characters have been escaped and there are a large number of
unnecessary fields provided. niceID and maxLength have been provided
to make conversions easier.

Note Record entries that are lists have their values seperated with
the string ' and '

Parameters

maxLength : optional [int]

default 1000, The max length for a continuous string. Most bibTex
implementation only allow string to be up to 1000 characters
(source [https://www.cs.arizona.edu/~collberg/Teaching/07.231/BibTeX/bibtex.html]),
this splits them up into substrings then uses the native string
concatenation (the '#' character) to allow for longer strings

WOSMode : optional [bool]

default False, if True the data produced will be unprocessed
and use double curly braces. This is the style WOS produces bib
files in and mostly macthes that.

restrictedOutput : optional [bool]

default False, if True the tags output will be limited to
tose found in metaknowledge.commonRecordFields

niceID : optional [bool]

default True, if True the ID used will be derived from the
authors, publishing date and title, if False it will be the UT
tag

Returns

str

The bibTex string of the Record

	
copy()

	Correctly copies the Record

Returns

Record

A completely decoupled copy of the original

	
createCitation(multiCite=False)

	Overwriting the general citation
creator
to deal with scopus weirdness.

Creates a citation string, using the same format as other WOS citations,
for the Record by reading the
relevant special tags ('year', 'J9', 'volume',
'beginningPage', 'DOI') and using it to create a
Citation object.

Parameters

multiCite : optional [bool]

Default False, if True a tuple of Citations is returned with
each having a different one of the records authors as the author

Returns

Citation

A Citation
object containing a citation for the Record.

	
encoding()

	An abstractmethod, gives the encoding string of the record.

Returns

str

The encoding

	
get(tag, default=None, raw=False)

	Allows access to the raw values or is an Exception safe wrapper to
__getitem__.

Parameters

tag : str

The requested tag

default : optional [Object]

Default None, the object returned when tag is not found

raw : optional [bool]

Default False, if True the unprocessed value of tag is
returned

Returns

Object

The processed value of tag or default

	
static getAltName(tag)

	An abstractmethod, gives the alternate name of tag or None

Parameters

tag : str

The requested tag

Returns

str

The alternate name of tag or None

	
getCitations(field=None, values=None, pandasFriendly=True)

	Creates a pandas ready dict with each row a different citation and
columns containing the original string, year, journal and author’s name.

There are also options to filter the output citations with field and
values

Parameters

field : optional str

Default None, if given all citations missing the named field
will be dropped.

values : optional str or list[str]

Default None, if field is also given only those citations with
one of the strings given in values will be included.

e.g. to get only citations from 1990 or 1991:
field = year, values = [1991, 1990]

pandasFriendly : optional bool

Default True, if False a list of the citations will be
returned instead of the more complicated pandas dict

Returns

dict

A pandas ready dict with all the citations

	
id

	

	
items(raw=False)

	Like items for dicts but with a raw option

Parameters

raw : optional [bool]

Default False, if True the KeysView contains the raw
values as the values

Returns

KeysView

The key-value pairs of the record

	
keys() → a set-like object providing a view on D's keys

	

	
sourceFile

	

	
sourceLine

	

	
specialFuncs(key)

	An abstractmethod, process the special tag, key using the whole
Record

Parameters

key : str

One of the special tags: 'authorsFull', 'keywords',
'grants', 'j9', 'authorsShort', 'volume',
'selfCitation', 'citations', 'address', 'abstract',
'title', 'month', 'year', 'journal',
'beginningPage' and 'DOI'

Returns

The processed value of key

	
subDict(tags, raw=False)

	Creates a dict of values of tags from the Record. The tags are the
keys and the values are the values. If the tag is missing the value will
be None.

Parameters

tags : list[str]

The list of tags requested

raw : optional [bool]

default False if True the retuned values of the dict will be
unprocessed

Returns

dict

A dictionary with the keys tags and the values from the record

	
static tagProcessingFunc(tag)

	An abstractmethod, gives the function for processing tag

Parameters

tag : optional [str]

The tag in need of processing

Returns

function

The function to process the raw tag

	
title

	

	
values(raw=False)

	Like values for dicts but with a raw option

Parameters

raw : optional [bool]

Default False, if True the ValuesView contains the raw
values

Returns

ValuesView

The values of the record

	
writeRecord(f)

	An abstractmethod, writes the record in its original form to
infile

Parameters

infile : writable file

The file to be written to

	
metaknowledge.scopus.recordScopus.scopusRecordParser(record, header=None)

	The parser
ScopusRecords
use. This takes a line from
scopusParser()
and parses it as a part of the creation of a ScopusRecord.

Note this is for csv files downloaded from scopus not the text
records as those are less complete. Also, Scopus uses double quotes
(") to quote strings, such as abstracts, in the csv so double quotes
in the string must be escaped. For reasons not fully understandable by
mortals they choose to use two double quotes in a row ("") to
represent an escaped double quote. This parser does not unescape these
quotes, but it does correctly handle their interacts with the outer
double quotes.

Parameters

record : str

string ending with a newline containing the record’s entry

Returns

dict

A dictionary of the key-vaue pairs in the entry

WOS

Overview

These are the functions used to process medline (pubmed) files at the
backend. They are meant for use internal use by metaknowledge.

Functions

	
metaknowledge.WOS.wosHandlers.isWOSFile(infile, checkedLines=3)

	Determines if infile is the path to a WOS file. A file is considerd to
be a WOS file if it has the correct encoding (utf-8 with a BOM) and
within the first checkedLines a line starts with "VR 1.0".

Parameters

infile : str

The path to the targets file

checkedLines : optional [int]

default 2, the number of lines to check for the header

Returns

bool

True if the file is a WOS file

	
metaknowledge.WOS.wosHandlers.wosParser(isifile)

	This is a function that is used to create
RecordCollections
from files.

wosParser() reads the file given by the path isifile, checks that
the header is correct then reads until it reaches EF. All WOS records it
encounters are parsed with
recordParser() and
converted into
Records. A list of
these Records is returned.

BadWOSFile is raised if an issue is found with the file.

Parameters

isifile : str

The path to the target file

Returns

List[Record]

All the Records found in isifile

Help Functions

	
metaknowledge.WOS.tagProcessing.helpFuncs.getMonth(s)

	
Known formats:

Month (“%b”)

Month Day (“%b %d”)

Month-Month (“%b-%b”) — this gets coerced to the first %b, dropping
the month range

Season (“%s”) — this gets coerced to use the first month of the
given season

Month Day Year (“%b %d %Y”)

Month Year (“%b %Y”)

Year Month Day (“%Y %m %d”)

	
metaknowledge.WOS.tagProcessing.helpFuncs.makeBiDirectional(d)

	
Helper for generating tagNameConverter

Makes dict that maps from key to value and back

	
metaknowledge.WOS.tagProcessing.helpFuncs.reverseDict(d)

	
Helper for generating fullToTag

Makes dict of value to key

Tag Functions

	
metaknowledge.WOS.tagProcessing.tagFunctions.DOI(val)

	
The DI Tag

return the DOI number of the record

Parameters

val: list[str]

The raw data from a WOS file

Returns

str

The DOI number string

	
metaknowledge.WOS.tagProcessing.tagFunctions.ISBN(val)

	
The BN Tag

extracts a list of ISBNs associated with the Record

Parameters

val: list[str]

The raw data from a WOS file

Returns

list

The ISBNs

	
metaknowledge.WOS.tagProcessing.tagFunctions.ISSN(val)

	
The SN Tag

extracts the ISSN of the Record

Parameters

val: list[str]

The raw data from a WOS file

Returns

str

The ISSN string

	
metaknowledge.WOS.tagProcessing.tagFunctions.ResearcherIDnumber(val)

	
The RI Tag

extracts a list of the research IDs of the Record

Parameters

val: list[str]

The raw data from a WOS file

Returns

list[str]

The list of the research IDs

	
metaknowledge.WOS.tagProcessing.tagFunctions.abstract(val)

	
The AB Tag

return abstract of the record, with newlines hopefully in the correct
places

Parameters

val: list[str]

The raw data from a WOS file

Returns

str

The abstract

	
metaknowledge.WOS.tagProcessing.tagFunctions.articleNumber(val)

	
The AR Tag

extracts a string giving the article number, not all are integers

Parameters

val: list[str]

The raw data from a WOS file

Returns

str

The article number

	
metaknowledge.WOS.tagProcessing.tagFunctions.authAddress(val)

	
The C1 Tag

extracts the address of the authors as given by WOS. Warning the
mapping of author to address is not very good and is given in multiple
ways.

Parameters

val: list[str]

The raw data from a WOS file

Returns

list[str]

A list of addresses

	
metaknowledge.WOS.tagProcessing.tagFunctions.authKeywords(val)

	
The DE Tag

extracts the keywords assigned by the author of the Record. The WOS
description is:

Author keywords are included in records of articles from 1991 forward. They are also include in conference proceedings records.

Parameters

val: list[str]

The raw data from a WOS file

Returns

list[str]

The list of keywords

	
metaknowledge.WOS.tagProcessing.tagFunctions.authorsFull(val)

	
The AF Tag

extracts a list of authors full names

Parameters

val: list[str]

The raw data from a WOS file

Returns

list[str]

A list of author’s names

	
metaknowledge.WOS.tagProcessing.tagFunctions.authorsShort(val)

	
The AU Tag

extracts a list of authors shortened names

Parameters

val: list[str]

The raw data from a WOS file

Returns

list[str]

A list of shortened author’s names

	
metaknowledge.WOS.tagProcessing.tagFunctions.beginningPage(val)

	
The BP Tag

extracts the first page the record occurs on, not all are integers

Parameters

val: list[str]

The raw data from a WOS file

Returns

str

The first page number

	
metaknowledge.WOS.tagProcessing.tagFunctions.bookAuthor(val)

	
The BA Tag

extracts a list of the short names of the authors of a book Record

Parameters

val: list[str]

The raw data from a WOS file

Returns

list[str]

A list of shortened author’s names

	
metaknowledge.WOS.tagProcessing.tagFunctions.bookAuthorFull(val)

	
The BF Tag

extracts a list of the long names of the authors of a book Record

Parameters

val: list[str]

The raw data from a WOS file

Returns

list[str]

A list of author’s names

	
metaknowledge.WOS.tagProcessing.tagFunctions.bookDOI(val)

	
The D2 Tag

extracts the book DOI of the Record

Parameters

val: list[str]

The raw data from a WOS file

Returns

str

The DOI number

	
metaknowledge.WOS.tagProcessing.tagFunctions.citations(val)

	
The CR Tag

extracts a list of all the citations in the record, the citations are
the
metaknowledge.Citation
class.

Parameters

val: list[str]

The raw data from a WOS file

Returns

list[metaknowledge.Citation]

A list of Citations

	
metaknowledge.WOS.tagProcessing.tagFunctions.citedRefsCount(val)

	
The NR Tag

extracts the number citations, length of CR list

Parameters

val: list[str]

The raw data from a WOS file

Returns

int

The number of CRs

	
metaknowledge.WOS.tagProcessing.tagFunctions.confDate(val)

	
The CY Tag

extracts the date string of the conference associated with the Record,
the date is not normalized

Parameters

val: list[str]

The raw data from a WOS file

Returns

str

The data of the conference

	
metaknowledge.WOS.tagProcessing.tagFunctions.confHost(val)

	
The HO Tag

extracts the host of the conference

Parameters

val: list[str]

The raw data from a WOS file

Returns

str

The host

	
metaknowledge.WOS.tagProcessing.tagFunctions.confLocation(val)

	
The CL Tag

extracts the sting giving the conference’s location

Parameters

val: list[str]

The raw data from a WOS file

Returns

str

The conferences address

	
metaknowledge.WOS.tagProcessing.tagFunctions.confSponsors(val)

	
The SP Tag

extracts a list of sponsors for the conference associated with the
record

Parameters

val: list[str]

The raw data from a WOS file

Returns

str

A the list of of sponsors

	
metaknowledge.WOS.tagProcessing.tagFunctions.confTitle(val)

	
The CT Tag

extracts the title of the conference associated with the Record

Parameters

val: list[str]

The raw data from a WOS file

Returns

str

The title of the conference

	
metaknowledge.WOS.tagProcessing.tagFunctions.docType(val)

	
The DT Tag

extracts the type of document the Record contains

Parameters

val: list[str]

The raw data from a WOS file

Returns

str

The type of the Record

	
metaknowledge.WOS.tagProcessing.tagFunctions.documentDeliveryNumber(val)

	
The GA Tag

extracts the document delivery number of the Record

Parameters

val: list[str]

The raw data from a WOS file

Returns

str

The document delivery number

	
metaknowledge.WOS.tagProcessing.tagFunctions.eISSN(val)

	
The EI Tag

extracts the EISSN of the Record

Parameters

val: list[str]

The raw data from a WOS file

Returns

str

The EISSN string

	
metaknowledge.WOS.tagProcessing.tagFunctions.editedBy(val)

	
The BE Tag

extracts a list of the editors of the Record

Parameters

val: list[str]

The raw data from a WOS file

Returns

list[str]

A list of editors

	
metaknowledge.WOS.tagProcessing.tagFunctions.editors(val)

	
Needs Work

currently not well understood, returns val

	
metaknowledge.WOS.tagProcessing.tagFunctions.email(val)

	
The EM Tag

extracts a list of emails given by the authors of the Record

Parameters

val: list[str]

The raw data from a WOS file

Returns

list[str]

A list of emails

	
metaknowledge.WOS.tagProcessing.tagFunctions.endingPage(val)

	
The EP Tag

return the last page the record occurs on as a string, not aall are
intergers

Parameters

val: list[str]

The raw data from a WOS file

Returns

str

The final page number

	
metaknowledge.WOS.tagProcessing.tagFunctions.funding(val)

	
The FU Tag

extracts a list of the groups funding the Record

Parameters

val: list[str]

The raw data from a WOS file

Returns

list[str]

A list of funding groups

	
metaknowledge.WOS.tagProcessing.tagFunctions.fundingText(val)

	
The FX Tag

extracts a string of the funding thanks

Parameters

val: list[str]

The raw data from a WOS file

Returns

str

The funding thank-you

	
metaknowledge.WOS.tagProcessing.tagFunctions.group(val)

	
The GP Tag

extracts the group associated with the Record

Parameters

val: list[str]

The raw data from a WOS file

Returns

str

A the name of the group

	
metaknowledge.WOS.tagProcessing.tagFunctions.groupName(val)

	
The CA Tag

extracts the name of the group associated with the Record

Parameters

val: list[str]

The raw data from a WOS file

Returns

str

The group’s name

	
metaknowledge.WOS.tagProcessing.tagFunctions.isoAbbreviation(val)

	
The JI Tag

extracts the iso abbreviation of the journal

Parameters

val: list[str]

The raw data from a WOS file

Returns

str

The iso abbreviation of the journal

	
metaknowledge.WOS.tagProcessing.tagFunctions.issue(val)

	
The IS Tag

extracts a string giving the issue or range of issues the Record was in,
not all are integers

Parameters

val: list[str]

The raw data from a WOS file

Returns

str

The issue number/range

	
metaknowledge.WOS.tagProcessing.tagFunctions.j9(val)

	
The J9 Tag

extracts the J9 (29-Character Source Abbreviation) of the publication

Parameters

val: list[str]

The raw data from a WOS file

Returns

str

The 29-Character Source Abbreviation

	
metaknowledge.WOS.tagProcessing.tagFunctions.journal(val)

	
The SO Tag

extracts the full name of the publication and normalizes it to uppercase

Parameters

val: list[str]

The raw data from a WOS file

Returns

str

The name of the journal

	
metaknowledge.WOS.tagProcessing.tagFunctions.keywords(val)

	
The ID Tag

extracts the WOS keywords of the Record. The WOS description is:

KeyWords Plus are index terms created by Thomson Reuters from significant, frequently occurring words in the titles of an article's cited references.

Parameters

val: list[str]

The raw data from a WOS file

Returns

list[str]

The keyWords list

	
metaknowledge.WOS.tagProcessing.tagFunctions.language(val)

	
The LA Tag

extracts the languages of the Record as a string with languages
separated by ‘, ‘, usually there is only one language

Parameters

val: list[str]

The raw data from a WOS file

Returns

str

The language(s) of the record

	
metaknowledge.WOS.tagProcessing.tagFunctions.meetingAbstract(val)

	
The MA Tag

extracts the ID of the meeting abstract prefixed by ‘EPA-‘

Parameters

val: list[str]

The raw data from a WOS file

Returns

str

The meeting abstract prefixed

	
metaknowledge.WOS.tagProcessing.tagFunctions.month(val)

	
The PD Tag

extracts the month the record was published in as an int with January as
1, February 2, …

Parameters

val: list[str]

The raw data from a WOS file

Returns

int

A integer giving the month

	
metaknowledge.WOS.tagProcessing.tagFunctions.orcID(val)

	
The OI Tag

extracts a list of orc IDs of the Record

Parameters

val: list[str]

The raw data from a WOS file

Returns

str

The orc ID

	
metaknowledge.WOS.tagProcessing.tagFunctions.pageCount(val)

	
The PG Tag

returns an integer giving the number of pages of the Record

Parameters

val: list[str]

The raw data from a WOS file

Returns

int

The page count

	
metaknowledge.WOS.tagProcessing.tagFunctions.partNumber(val)

	
The PN Tag

return an integer giving the part of the issue the Record is in

Parameters

val: list[str]

The raw data from a WOS file

Returns

int

The part of the issue of the Record

	
metaknowledge.WOS.tagProcessing.tagFunctions.pubMedID(val)

	
The PM Tag

extracts the pubmed ID of the record

Parameters

val: list[str]

The raw data from a WOS file

Returns

str

The pubmed ID

	
metaknowledge.WOS.tagProcessing.tagFunctions.pubType(val)

	
The PT Tag

extracts the type of publication as a character: conference, book,
journal, book in series, or patent

Parameters

val: list[str]

The raw data from a WOS file

Returns

str

A string

	
metaknowledge.WOS.tagProcessing.tagFunctions.publisher(val)

	
The PU Tag

extracts the publisher of the Record

Parameters

val: list[str]

The raw data from a WOS file

Returns

str

The publisher

	
metaknowledge.WOS.tagProcessing.tagFunctions.publisherAddress(val)

	
The PA Tag

extracts the publishers address

Parameters

val: list[str]

The raw data from a WOS file

Returns

str

The publisher address

	
metaknowledge.WOS.tagProcessing.tagFunctions.publisherCity(val)

	
The PI Tag

extracts the city the publisher is in

Parameters

val: list[str]

The raw data from a WOS file

Returns

str

The city of the publisher

	
metaknowledge.WOS.tagProcessing.tagFunctions.reprintAddress(val)

	
The RP Tag

extracts the reprint address string

Parameters

val: list[str]

The raw data from a WOS file

Returns

str

The reprint address

	
metaknowledge.WOS.tagProcessing.tagFunctions.seriesSubtitle(val)

	
The BS Tag

extracts the title of the series the Record is in

Parameters

val: list[str]

The raw data from a WOS file

Returns

str

The subtitle of the series

	
metaknowledge.WOS.tagProcessing.tagFunctions.seriesTitle(val)

	
The SE Tag

extracts the title of the series the Record is in

Parameters

val: list[str]

The raw data from a WOS file

Returns

str

The title of the series

	
metaknowledge.WOS.tagProcessing.tagFunctions.specialIssue(val)

	
The SI Tag

extracts the special issue value

Parameters

val: list[str]

The raw data from a WOS file

Returns

str

The special issue value

	
metaknowledge.WOS.tagProcessing.tagFunctions.subjectCategory(val)

	
The SC Tag

extracts a list of the subjects associated with the Record

Parameters

val: list[str]

The raw data from a WOS file

Returns

list[str]

A list of the subjects associated with the Record

	
metaknowledge.WOS.tagProcessing.tagFunctions.subjects(val)

	
The WC Tag

extracts a list of subjects as assigned by WOS

Parameters

val: list[str]

The raw data from a WOS file

Returns

list[str]

The subjects list

	
metaknowledge.WOS.tagProcessing.tagFunctions.supplement(val)

	
The SU Tag

extracts the supplement number

Parameters

val: list[str]

The raw data from a WOS file

Returns

str

The supplement number

	
metaknowledge.WOS.tagProcessing.tagFunctions.title(val)

	
The TI Tag

extracts the title of the record

Parameters

val: list[str]

The raw data from a WOS file

Returns

str

The title of the record

	
metaknowledge.WOS.tagProcessing.tagFunctions.totalTimesCited(val)

	
The Z9 Tag

extracts the total number of citations of the record

Parameters

val: list[str]

The raw data from a WOS file

Returns

int

The total number of citations

	
metaknowledge.WOS.tagProcessing.tagFunctions.volume(val)

	
The VL Tag

return the volume the record is in as a string, not all are integers

Parameters

val: list[str]

The raw data from a WOS file

Returns

str

The volume number

	
metaknowledge.WOS.tagProcessing.tagFunctions.wosString(val)

	
The UT Tag

extracts the WOS number of the record as a string preceded by “WOS:”

Parameters

val: list[str]

The raw data from a WOS file

Returns

str

The WOS number

	
metaknowledge.WOS.tagProcessing.tagFunctions.wosTimesCited(val)

	
The TC Tag

extracts the number of times the Record has been cited by records in WOS

Parameters

val: list[str]

The raw data from a WOS file

Returns

int

The number of time the Record has been cited

	
metaknowledge.WOS.tagProcessing.tagFunctions.year(val)

	
The PY Tag

extracts the year the record was published in as an int

Parameters

val: list[str]

The raw data from a WOS file

Returns

int

The year

Dict Functions

	
metaknowledge.WOS.tagProcessing.funcDicts.isTagOrName(val)

	Checks if val is a tag or full name of tag if so returns True

Parameters

val: str

A string possible forming a tag or name

Returns

bool

True if val is a tag or name, otherwise False

	
metaknowledge.WOS.tagProcessing.funcDicts.normalizeToName(val)

	Converts tags or full names to full names, case sensitive

Parameters

val: str

A two character string giving the tag or its full name

Returns

str

The full name of val

	
metaknowledge.WOS.tagProcessing.funcDicts.normalizeToTag(val)

	Converts tags or full names to 2 character tags, case insensitive

Parameters

val: str

A two character string giving the tag or its full name

Returns

str

The short name of val

	
metaknowledge.WOS.tagProcessing.funcDicts.tagToFull(tag)

	A wrapper for tagToFullDict, it maps 2 character tags to their full
names.

Parameters

tag: str

A two character string giving the tag

Returns

str

The full name of tag

Backend

This file contains the Record class for metaknowledge and one helper
function for parsing WOS records, recordParser. The record class is used
to represent a single records meta-data from WOS.

	
class metaknowledge.WOS.recordWOS.WOSRecord(inRecord, sFile='', sLine=0)

	Bases: metaknowledge.mkRecord.ExtendedRecord

Class for full WOS records

It is meant to be immutable; many of the methods and attributes are
evaluated when first called, not when the object is created, and the
results are stored privately.

The record’s meta-data is stored in an ordered dictionary labeled by WOS
tags. To access the raw data stored in the original record the
tags()
method can be used. To access data that has been processed and cleaned
the attributes named after the tags are used.

Customizations

The Record’s hashing and equality testing are based on the WOS
number (the tag is ‘UT’, and also called the accession number). They are
strings starting with 'WOS:' and followed by 15 or so numbers and
letters, although both the length and character set are known to vary.
The numbers are unique to each record so are used for comparisons. If a
record is bad all equality checks return False.

When converted to a string the records title is used so for a record
R, R.TI == R.title == str(R) and its representation uses the WOS
number instead of memory location.

Attributes

When a record is created if the parsing of the WOS file failed it is
marked as bad. The bad attribute is set to True and the
error attribute is created to contain the exception object.

Generally, to get the information from a Record its attributes should be
used. For a Record R, calling R.CR causes
citations()
from the the
tagProcessing
module to be called on the contents of the raw ‘CR’ field. Then the
result is saved and returned. In this case, a list of Citation objects
is returned. You can also call R.citations to get the same effect,
as each known field tag has a longer name (currently there are 61 field
tags). These names are meant to make accessing tags more readable and
mapping from tag to name can be found in the tagToFull dict. If a tag is
known (in
tagToFull)
but not in the raw data None is returned instead. Most tags when
cleaned return a string or list of strings, the exact results can be
found in the help for the particular function.

The attribute authors is also defined as a convenience and returns
the same as ‘AF’ or if that is not found ‘AU’.

__Init__

Records are generally created as collections in
Recordcollections,
and not as individual objects. If you wish to create one on its own it
is possible, the arguments are as follows.

Parameters

inRecord: files stream, dict, str or itertools.chain

If it is a file stream the file must be open at the location of the
first tag in the record, usually ‘PT’, and the file will be read
until ‘ER’ is found, which indicates the end of the record in the
file.

If a dict is passed the dictionary is used as the database of fields
and tags, so each key is considered a WOS tag and each value a list
of the lines of the original associated with the tag. This is the
same form of dict that
recordParser
returns.

For a string the input must be the raw textual data of a single
record in the WOS style, like the file stream it must start at the
first tag and end in 'ER'.

itertools.chain is treated identically to a file stream and is used
by
RecordCollections.

sFile : optional [str]

Is the name of the file the raw data was in, by default it is blank.
It is mostly used to make error messages more informative.

sLine : optional [int]

Is the line the record starts on in the raw data file. It is mostly
used to make error messages more informative.

	
UT

	Returns the UT tag (WOS number) of the record

	
authGenders(countsOnly=False, fractionsMode=False, _countsTuple=False)

	Creates a dict mapping 'Male', 'Female' and 'Unknown' to
lists of the names of all the authors.

	
authors

	

	
bibString(maxLength=1000, WOSMode=False, restrictedOutput=False, niceID=True)

	Makes a string giving the Record as a bibTex entry. If the Record is of
a journal article (PT J) the bibtext type is set to 'article',
otherwise it is set to 'misc'. The ID of the entry is the WOS number
and all the Record’s fields are given as entries with their long names.

Note This is not meant to be used directly with LaTeX none of the
special characters have been escaped and there are a large number of
unnecessary fields provided. niceID and maxLength have been provided
to make conversions easier.

Note Record entries that are lists have their values seperated with
the string ' and '

	
copy()

	Correctly copies the Record

	
createCitation(multiCite=False)

	Creates a citation string, using the same format as other WOS citations,
for the Record by reading the
relevant special tags ('year', 'J9', 'volume',
'beginningPage', 'DOI') and using it to create a
Citation object.

	
encoding()

	An abstractmethod, gives the encoding string of the record.

	
get(tag, default=None, raw=False)

	Allows access to the raw values or is an Exception safe wrapper to
__getitem__.

	
static getAltName(tag)

	An abstractmethod, gives the alternate name of tag or None

	
getCitations(field=None, values=None, pandasFriendly=True)

	Creates a pandas ready dict with each row a different citation and
columns containing the original string, year, journal and author’s name.

There are also options to filter the output citations with field and
values

	
id

	

	
items(raw=False)

	Like items for dicts but with a raw option

	
keys() → a set-like object providing a view on D's keys

	

	
sourceFile

	

	
sourceLine

	

	
specialFuncs(key)

	An abstractmethod, process the special tag, key using the whole
Record

	
subDict(tags, raw=False)

	Creates a dict of values of tags from the Record. The tags are the
keys and the values are the values. If the tag is missing the value will
be None.

	
static tagProcessingFunc(tag)

	An abstractmethod, gives the function for processing tag

	
title

	

	
values(raw=False)

	Like values for dicts but with a raw option

	
wosString

	Returns the WOS number (UT tag) of the record

	
writeRecord(infile)

	Writes to infile the original contents of the Record. This is intended
for use by
RecordCollections
to write to file. What is written to infile is bit for bit identical
to the original record file (if utf-8 is used). No newline is inserted
above the write but the last character is a newline.

	
metaknowledge.WOS.recordWOS.recordParser(paper)

	This is function that is used to create
Records from files.

recordParser() reads the file paper until it reaches ‘ER’. For
each field tag it adds an entry to the returned dict with the tag as the
key and a list of the entries as the value, the list has each line
separately, so for the following two lines in a record:

AF BREVIK, I
 ANICIN, B

The entry in the returned dict would be
{'AF' : ["BREVIK, I", "ANICIN, B"]}

Record objects can be created with these dictionaries as the
initializer.

Parameters

paper : file stream

An open file, with the current line at the beginning of the WOS
record.

Returns

OrderedDict[str : List[str]]

A dictionary mapping WOS tags to lists, the lists are of strings,
each string is a line of the record associated with the tag.

Classes

	CIHRGrant(Grant)

	Citation(Hashable)

	Collection(MutableSet, Hashable)

	CollectionWithIDs(Collection)

	ExtendedRecord(Record)

	FallbackGrant(Grant)

	Grant(Record, MutableMapping)

	GrantCollection(CollectionWithIDs)

	MedlineGrant(Grant)

	MedlineRecord(ExtendedRecord)

	NSERCGrant(Grant)

	NSFGrant(Grant)

	ProQuestRecord(ExtendedRecord)

	Record(Mapping, Hashable)

	RecordCollection(CollectionWithIDs)

	ScopusRecord(ExtendedRecord)

	WOSRecord(ExtendedRecord)

CIHRGrant(Grant)

	
class metaknowledge.grants.cihrGrant.CIHRGrant(original, grantdDict, sFile, sLine)

	

	
metaknowledge.grants.cihrGrant.isCIHRfile(fileName, useFileName=True)

	

	
metaknowledge.grants.cihrGrant.parserCIHRfile(fileName)

	

Citation(Hashable)

	
class metaknowledge.citation.Citation(cite, scopusMode=False)

	A class to hold citation strings and allow for comparison between them.

The initializer takes in a string representing a WOS citation in the
form:

Author, Year, Journal, Volume, Page, DOI

Author is the author’s name in the form of first last name first
initial sometimes followed by a period.

Year is the year of publication.

Journal being the 29-Character Source Abbreviation of the journal.

Volume is the volume number(s) of the publication preceded by a V

Page is the page number the record starts on

DOI is the DOI number of the cited record preceeded by the letters
'DOI'

Combined they look like:

Nunez R., 1998, MATH COGNITION, V4, P85, DOI 10.1080/135467998387343

Note: any of the fields have been known to be missing and the
requirements for the fields are not always met. If something is in the
source string that cannot be interpreted as any of these it is put in
the misc attribute. That is the reason to use this class, it
gracefully handles missing information while still allowing for
comparison between WOS citation strings.

Customizations

Citation’s hashing and equality checking are based on
ID() and use the values of
author, year and journal.

When converted to a string a Citation will return the original string.

Attributes

As noted above, citations are considered to be divided into six distinct
fields (Author, Year, Journal, Volume, Page and
DOI) with a seventh misc for anything not in those. Records thus
have an attribute with a name corresponding to each author,
year, journal, V, P, DOI and misc respectively.
These are created if there is anything in the field. So a Citation
created from the string: 'Nunez R., 1998, MATH COGNITION' would have
author, year and journal defined. While one from
'Nunez R.' would have only the attribute misc.

If the parsing of a citation string fails the attribute bad is set
to True and the attribute error is created to contain said
error, which is a
BadCitation
object. If no errors occur bad is False.

The attribute original is the unmodified string (cite) given to
create the Citation, it can also be accessed by converting to a string,
e.g. with str().

__Init__

Citations can be created by
Records or by giving the
initializer a string containing a WOS style citation.

Parameters

cite : str

A str containing a WOS style citation.

	
Extra()

	Returns any V, P, DOI or misc values as a string. These
are all the values not returned by
ID(), they are separated by
' ,'.

	
FullJournalName()

	Returns the full name of the Citation’s journal field. Requires the
j9Abbreviations
database file.

Note: Requires the
j9Abbreviations
database file and will raise an error if it cannot be found.

	
ID()

	Returns all of author, year and journal available separated
by ' ,'. It is for shortening labels when creating networks as the
resultant strings are often unique.
Extra() gets everything not
returned by ID().

This is also used for hashing and equality checking.

	
__eq__(other)

	First checks DOI for equality then checks each attribute if any are not
equal False is returned

	
__hash__()

	A hash for Citation that should be equal to the hash of other citations
that are equal to it. Based on the values returned by
ID().

	
__init__(cite, scopusMode=False)

	Initialize self. See help(type(self)) for accurate signature.

	
__repr__()

	the representation of the Citation is its original form

	
__str__()

	returns the original string

	
__weakref__

	list of weak references to the object (if defined)

	
addToDB(manualName=None, manualDB='manualj9Abbreviations', invert=False)

	Adds the journal of this Citation to the user created database of
journals. This will cause
isJournal() to return
True for this Citation and all others with its journal.

Note: Requires the
j9Abbreviations
database file and will raise an error if it cannot be found.

	
allButDOI()

	Returns a string of the normalized values from the Citation excluding
the DOI number. Equivalent to getting the ID with
ID() then appending the extra
values from Extra() and
then removing the substring containing the DOI number.

	
isAnonymous()

	Checks if the author is given as '[ANONYMOUS]' and returns True
if so.

	
isJournal(dbname='j9Abbreviations', manualDB='manualj9Abbreviations', returnDict='both', checkIfExcluded=False)

	Returns True if the Citation’s journal field is a journal
abbreviation from the WOS listing found at
http://images.webofknowledge.com/WOK46/help/WOS/A_abrvjt.html, i.e.
checks if the citation is citing a journal.

Note: Requires the
j9Abbreviations
database file and will raise an error if it cannot be found.

Note: All parameters are used for getting the data base with
getj9dict.

	
metaknowledge.citation.filterNonJournals(citesLst, invert=False)

	Removes the Citations from citesLst that are not journals

Parameters

citesLst : list [Citation]

A list of citations to be filtered

invert : optional [bool]

Default False, if True non-journals will be kept instead of
journals

Returns

list [Citation]

A filtered list of Citations from citesLst

Collection(MutableSet, Hashable)

	
class metaknowledge.Collection(inSet, allowedTypes, collectedTypes, name, bad, errors, quietStart=False)

	A named hashable set with some error reporting.

Collections have all the methods of builtin sets as well as
error reporting with bad and error, and control over the contained
items with allowedTypes and collectedTypes.

Customizations

When created name should be a string that allows users to easily
determine the source of the Collection

When created the you must provided a set of types, allowedTypes, when
new items are added they will be checked and if they are not instances
of any of the types an CollectionTypeError exception will be raised.
The collectedTypes set that is provided should be a set of only the
types in the Collection.

If any of the elements in the Collection are bad then bad should
be set to True and the dict errors should map the item to it’s
exception.

All of these customizations are managed when operations occur on the
Collection and if 2 Collections are modified with one of the
binary operators (|, -, etc) the _collectedTypes and
errors attributes will be modified the same way. name will be
updated to explain the operation(s) that occurred.

__Init__

As Collection is mostly meant to be base for other classes all but
one of the arguments in the __Init__ are not optional and the
optional one is not used.

Parameters

inSet : set

The objects to be contained

allowedTypes : set[type]

A set of types, {object} will allow virtually everything

collectedTypes : set[type]

The types (or supertypes) of the objects in inSet

name : str

The name of the Collection

bad : bool

If any of the elements are bad

errors : dict[:Exception]

A mapping from items to their errors

quietStart : optional [bool]

Default False, does nothing. This is here for use as a interface
by subclasses

	
__eq__(other)

	Return self==value.

	
__ge__(other)

	Return self>=value.

	
__hash__()

	Return hash(self).

	
__init__(inSet, allowedTypes, collectedTypes, name, bad, errors, quietStart=False)

	Basically a collections.abc.MutableSet wrapper for a set with a bunch of
extra record keeping attached.

	
__le__(other)

	Return self<=value.

	
__repr__()

	Return repr(self).

	
__str__()

	Return str(self).

	
__weakref__

	list of weak references to the object (if defined)

	
add(elem)

	Adds elem to the collection.

	
chunk(maxSize)

	Splits the Collection into maxSize size or smaller Collections

	
clear()

	“Removes all elements from the collection and resets the error handling

	
copy()

	Creates a shallow copy of the collection

	
discard(elem)

	Removes elem from the collection, will not raise an Exception if
elem is missing

	
peek()

	returns a random element from the collection. If ran twice the same
element will usually be returned

	
pop()

	Removes a random element from the collection and returns it

	
remove(elem)

	Removes elem from the collection, will raise a KeyError is elem is
missing

	
split(maxSize)

	Destructively, splits the Collection into maxSize size or smaller
Collections. The source Collection will be empty after this
operation

CollectionWithIDs(Collection)

	
class metaknowledge.CollectionWithIDs(inSet, allowedTypes, collectedTypes, name, bad, errors, quietStart=False)

	A Collection with a few
extra methods that assume all the contained items have an id attribute
and a bad attribute, e.g.
Records or
Grants.

__Init__

As CollectionWithIDs is mostly meant to be base for other classes
all but one of the arguments in the __init__ are not optional and
the optional one is not used. The __init__() function is the same as
a Collection.

	
__init__(inSet, allowedTypes, collectedTypes, name, bad, errors, quietStart=False)

	Basically a collections.abc.MutableSet wrapper for a set with a bunch of
extra record keeping attached.

	
badEntries()

	Creates a new collection of the same type with only the bad entries

Returns

CollectionWithIDs

A collection of only the bad entries

	
containsID(idVal)

	Checks if the collected items contains the give idVal

Parameters

idVal : str

The queried id string

Returns

bool

True if the item is in the collection

	
cooccurrenceCounts(keyTag, *countedTags)

	Counts the number of times values from any of the countedTags occurs
with keyTag. The counts are retuned as a dictionary with the values of
keyTag mapping to dictionaries with each of the countedTags values
mapping to thier counts.

Parameters

keyTag : str

The tag used as the key for the returned dictionary

*countedTags : str, str, str, ...

The tags used as the key for the returned dictionary’s values

Returns

dict[str:dict[str:int]]

The dictionary of counts

	
discardID(idVal)

	Checks if the collected items contains the give idVal and discards it
if it is found, will not raise an exception if item is not found

Parameters

idVal : str

The discarded id string

	
dropBadEntries()

	Removes all the bad entries from the collection

	
getID(idVal)

	Looks up an item with idVal and returns it if it is found, returns
None if it does not find the item

Parameters

idVal : str

The requested item’s id string

Returns

object

The requested object or None

	
glimpse(*tags, compact=False)

	Creates a printable table with the most frequently occurring values of
each of the requested tags, or if none are provided the top authors,
journals and citations. The table will be as wide and as tall as the
terminal (or 80x24 if there is no terminal) so
print(RC.glimpse())should always create a nice looking table.
Below is a table created from some of the testing files:

>>> print(RC.glimpse())
+RecordCollection glimpse made at: 2016-01-01 12:00:00++++++++++++++++++++++++++
|33 Records from testFile++|
|Columns are ranked by num. of occurrences and are independent of one another++|
|-------Top Authors--------+------Top Journals-------+--------Top Cited--------|
|1 Girard, S|1 CANADIAN JOURNAL OF PH.|1 LEVY Y, 1975, OPT COMM.|
|1 Gilles, H|1 JOURNAL OF THE OPTICAL.|2 GOOS F, 1947, ANN PHYS.|
|2 IMBERT, C|2 APPLIED OPTICS|3 LOTSCH HKV, 1970, OPTI.|
|2 Pillon, F|2 OPTICS COMMUNICATIONS|4 RENARD RH, 1964, J OPT.|
|3 BEAUREGARD, OCD|2 NUOVO CIMENTO DELLA SO.|5 IMBERT C, 1972, PHYS R.|
|3 Laroche, M|2 JOURNAL OF THE OPTICAL.|6 ARTMANN K, 1948, ANN P.|
|3 HUARD, S|2 JOURNAL OF THE OPTICAL.|6 COSTADEB.O, 1973, PHYS.|
|4 PURI, A|2 NOUVELLE REVUE D OPTIQ.|6 ROOSEN G, 1973, CR ACA.|
|4 COSTADEB.O|3 PHYSICS REPORTS-REVIEW.|7 Imbert C., 1972, Nouve.|
|4 PATTANAYAK, DN|3 PHYSICAL REVIEW LETTERS|8 HOROWITZ BR, 1971, J O.|
|4 Gazibegovic, A|3 USPEKHI FIZICHESKIKH N.|8 BRETENAKER F, 1992, PH.|
|4 ROOSEN, G|3 APPLIED PHYSICS B-LASE.|8 SCHILLIN.H, 1965, ANN .|
|4 BIRMAN, JL|3 AEU-INTERNATIONAL JOUR.|8 FEDOROV FI, 1955, DOKL.|
|4 Kaiser, R|3 COMPTES RENDUS HEBDOMA.|8 MAZET A, 1971, CR ACAD.|
|5 LEVY, Y|3 CHINESE PHYSICS LETTERS|9 IMBERT C, 1972, CR ACA.|
|5 BEAUREGA.OC|3 PHYSICAL REVIEW B|9 LOTSCH HKV, 1971, OPTI.|
|5 PAVLOV, VI|3 LETTERE AL NUOVO CIMEN.|9 ASHBY N, 1973, PHYS RE.|
|5 BREVIK, I|3 PROGRESS IN QUANTUM EL.|9 BOULWARE DG, 1973, PHY.|
>>>

Parameters

tags : str, str, ...

Any number of tag strings to be made into columns in the output
table

Returns

str

A string containing the table

	
networkMultiLevel(*modes, nodeCount=True, edgeWeight=True, stemmer=None, edgeAttribute=None, nodeAttribute=None, _networkTypeString='n-level network')

	Creates a network of the objects found by any number of tags modes,
with edges between all co-occurring values. IF you only want edges
between co-occurring values from different tags use
networkMultiMode().

A networkMultiLevel() looks are each entry in the collection and
extracts its values for the tag given by each of the modes, e.g. the
'authorsFull' tag. Then if multiple are returned an edge is created
between them. So in the case of the author tag 'authorsFull' a
co-authorship network is created. Then for each other tag the entries
are also added and edges between the first tag’s node and theirs are
created.

The number of times each object occurs is count if nodeCount is
True and the edges count the number of co-occurrences if
edgeWeight is True. Both areTrue by default.

Note Do not use this for the construction of co-citation networks
use
Recordcollection.networkCoCitation()
it is more accurate and has more options.

Parameters

mode : str

A two character WOS tag or one of the full names for a tag

nodeCount : optional [bool]

Default True, if True each node will have an attribute
called “count” that contains an int giving the number of time the
object occurred.

edgeWeight : optional [bool]

Default True, if True each edge will have an attribute
called “weight” that contains an int giving the number of time the
two objects co-occurrenced.

stemmer : optional [func]

Default None, If stemmer is a callable object, basically a
function or possibly a class, it will be called for the ID of every
node in the graph, all IDs are strings. For example:

The function f = lambda x: x[0] if given as the stemmer will
cause all IDs to be the first character of their unstemmed IDs. e.g.
the title
'Goos-Hanchen and Imbert-Fedorov shifts for leaky guided modes'
will create the node 'G'.

Returns

networkx Graph

A networkx Graph with the objects of the tag mode as nodes and
their co-occurrences as edges

	
networkMultiMode(*tags, recordType=True, nodeCount=True, edgeWeight=True, stemmer=None, edgeAttribute=None)

	Creates a network of the objects found by all tags in tags, each node
is marked by which tag spawned it making the resultant graph n-partite.

A networkMultiMode() looks are each item in the collection and
extracts its values for the tags given by tags. Then for all objects
returned an edge is created between them, regardless of their type. Each
node will have an attribute call 'type' that gives the tag that
created it or both if both created it, e.g. if 'LA' were in tags
node 'English' would have the type attribute be 'LA'.

For example if tags was set to ['CR', 'UT', 'LA'], a three mode
network would be created, composed of a co-citation network from the
'CR' tag. Then each citation would also have edges to all the
languages of Records that cited it and to the WOS number of the those
Records.

The number of times each object occurs is count if nodeCount is
True and the edges count the number of co-occurrences if
edgeWeight is True. Both areTrue by default.

Parameters

tags : str, str, str, … or list [str]

Any number of tags, or a list of tags

nodeCount : optional [bool]

Default True, if True each node will have an attribute
called 'count' that contains an int giving the number of time
the object occurred.

edgeWeight : optional [bool]

Default True, if True each edge will have an attribute
called 'weight' that contains an int giving the number of time
the two objects co-occurrenced.

stemmer : optional [func]

Default None, If stemmer is a callable object, basically a
function or possibly a class, it will be called for the ID of every
node in the graph, note that all IDs are strings.

For example: the function f = lambda x: x[0] if given as the
stemmer will cause all IDs to be the first character of their
unstemmed IDs. e.g. the title
'Goos-Hanchen and Imbert-Fedorov shifts for leaky guided modes'
will create the node 'G'.

Returns

networkx Graph

A networkx Graph with the objects of the tags tags as nodes and
their co-occurrences as edges

	
networkOneMode(mode, nodeCount=True, edgeWeight=True, stemmer=None, edgeAttribute=None, nodeAttribute=None)

	Creates a network of the objects found by one tag mode. This is the
same as
networkMultiLevel()
with only one tag.

A networkOneMode() looks are each entry in the collection and
extracts its values for the tag given by mode, e.g. the
'authorsFull' tag. Then if multiple are returned an edge is created
between them. So in the case of the author tag 'authorsFull' a
co-authorship network is created.

The number of times each object occurs is count if nodeCount is
True and the edges count the number of co-occurrences if
edgeWeight is True. Both areTrue by default.

Note Do not use this for the construction of co-citation networks
use
Recordcollection.networkCoCitation()
it is more accurate and has more options.

Parameters

mode : str

A two character WOS tag or one of the full names for a tag

nodeCount : optional [bool]

Default True, if True each node will have an attribute
called “count” that contains an int giving the number of time the
object occurred.

edgeWeight : optional [bool]

Default True, if True each edge will have an attribute
called “weight” that contains an int giving the number of time the
two objects co-occurrenced.

stemmer : optional [func]

Default None, If stemmer is a callable object, basically a
function or possibly a class, it will be called for the ID of every
node in the graph, all IDs are strings. For example:

The function f = lambda x: x[0] if given as the stemmer will
cause all IDs to be the first character of their unstemmed IDs. e.g.
the title
'Goos-Hanchen and Imbert-Fedorov shifts for leaky guided modes'
will create the node 'G'.

Returns

networkx Graph

A networkx Graph with the objects of the tag mode as nodes and
their co-occurrences as edges

	
networkTwoMode(tag1, tag2, directed=False, recordType=True, nodeCount=True, edgeWeight=True, stemmerTag1=None, stemmerTag2=None, edgeAttribute=None)

	Creates a network of the objects found by two WOS tags tag1 and
tag2, each node marked by which tag spawned it making the resultant
graph bipartite.

A networkTwoMode() looks at each Record in the RecordCollection
and extracts its values for the tags given by tag1 and tag2, e.g.
the 'WC' and 'LA' tags. Then for each object returned by each
tag and edge is created between it and every other object of the other
tag. So the WOS defined subject tag 'WC' and language tag 'LA',
will give a two-mode network showing the connections between subjects
and languages. Each node will have an attribute call 'type' that
gives the tag that created it or both if both created it, e.g. the node
'English' would have the type attribute be 'LA'.

The number of times each object occurs is count if nodeCount is
True and the edges count the number of co-occurrences if
edgeWeight is True. Both areTrue by default.

The directed parameter if True will cause the network to be
directed with the first tag as the source and the second as the
destination.

Parameters

tag1 : str

A two character WOS tag or one of the full names for a tag, the
source of edges on the graph

tag1 : str

A two character WOS tag or one of the full names for a tag, the
target of edges on the graph

directed : optional [bool]

Default False, if True the returned network is directed

nodeCount : optional [bool]

Default True, if True each node will have an attribute
called “count” that contains an int giving the number of time the
object occurred.

edgeWeight : optional [bool]

Default True, if True each edge will have an attribute
called “weight” that contains an int giving the number of time the
two objects co-occurrenced.

stemmerTag1 : optional [func]

Default None, If stemmerTag1 is a callable object, basically a
function or possibly a class, it will be called for the ID of every
node given by tag1 in the graph, all IDs are strings.

For example: the function f = lambda x: x[0] if given as the
stemmer will cause all IDs to be the first character of their
unstemmed IDs. e.g. the title
'Goos-Hanchen and Imbert-Fedorov shifts for leaky guided modes'
will create the node 'G'.

stemmerTag2 : optional [func]

Default None, see stemmerTag1 as it is the same but for tag2

Returns

networkx Graph or networkx DiGraph

A networkx Graph with the objects of the tags tag1 and tag2 as
nodes and their co-occurrences as edges.

	
rankedSeries(tag, outputFile=None, giveCounts=True, giveRanks=False, greatestFirst=True, pandasMode=True, limitTo=None)

	Creates an pandas dict of the ordered list of all the values of tag,
with and ranked by their number of occurrences. A list can also be
returned with the the counts or ranks added or it can be written to a
file.

Parameters

tag : str

The tag to be ranked

outputFile : optional str

A file path to write a csv with 2 columns, one the tag values the
other their counts

giveCounts : optional bool

Default True, if True the retuned list will be composed of
tuples the first values being the tag value and the second their
counts. This supersedes giveRanks.

giveRanks : optional bool

Default False, if True and giveCounts is False, the
retuned list will be composed of tuples the first values being the
tag value and the second their ranks. This is superseded by
giveCounts.

greatestFirst : optional bool

Default True, if True the returned list will be ordered with
the highest ranked value first, otherwise the lowest ranked will be
first.

pandasMode : optional bool

Default True, if True a dict ready for pandas will be
returned, otherwise a list

limitTo : optional list[values]

Default None, if a list is provided only those values in the
list will be counted or returned

Returns

dict[str:list[value]] or list[str]

A dict or list will be returned depending on if pandasMode
is True

	
removeID(idVal)

	Checks if the collected items contains the give idVal and removes it
if it is found, will raise a KeyError if item is not found

Parameters

idVal : str

The removed id string

	
tags()

	Creates a list of all the tags of the contained items

Returns

list [str]

A list of all the tags

	
timeSeries(tag=None, outputFile=None, giveYears=True, greatestFirst=True, limitTo=False, pandasMode=True)

	Creates an pandas dict of the ordered list of all the values of tag,
with and ranked by the year the occurred in, multiple year occurrences
will create multiple entries. A list can also be returned with the the
counts or years added or it can be written to a file.

If no tag is given the Records in the collection will be used

Parameters

tag : optional str

Default None, if provided the tag will be ordered

outputFile : optional str

A file path to write a csv with 2 columns, one the tag values the
other their years

giveYears : optional bool

Default True, if True the retuned list will be composed of
tuples the first values being the tag value and the second their
years.

greatestFirst : optional bool

Default True, if True the returned list will be ordered with
the highest years first, otherwise the lowest years will be first.

pandasMode : optional bool

Default True, if True a dict ready for pandas will be
returned, otherwise a list

limitTo : optional list[values]

Default None, if a list is provided only those values in the
list will be counted or returned

Returns

dict[str:list[value]] or list[str]

A dict or list will be returned depending on if pandasMode
is True

ExtendedRecord(Record)

	
class metaknowledge.ExtendedRecord(fieldDict, idValue, bad, error, sFile='', sLine=0)

	A subclass of Record that adds processing to the dictionary. It also
cannot be use directly and must be subclassed.

The ExtendedRecord class is a extension of Record that is
intended for use with the records on scientific papers provided by
different organizations such as WOS or Pubmed. The 5 abstract (virtual)
methods must be defined for each subclass and define how the data in the
different fields is processed and how the record can be rewritten to a
file.

Processing fields

When an ExtendedRecord is created a dictionary, fieldDict, must be
provided this contains the raw data from the file reader, usually as
lists of strings. tagProcessingFunc is a staticmethod function
that takes in a tag string an returns another function to process it.

Each tag may also be given a second name, as usually what the they are
called in the raw data are not very easy to understand (e.g. 'SO' is
the journal name for WOs records). The mapping from the raw tag
('SO') to the human friendly string ('journal') is done with the
getAltName staticmethod. getAltName takes in a tag string
and returns either None or the other name for that string. Note,
getAltName must go both directions
WOSRecord.getAltName(WOSRecord.getAltName('SO')) == 'SO'.

The last method for processing entries is specialFuncs The following
are the special keys for ExtendedRecords. These must be the
alternate names of tags or strings accepted by the specialFuncs
method.

	'authorsFull'

	'keywords'

	'grants'

	'j9'

	'authorsShort'

	'volume'

	'selfCitation'

	'citations'

	'address'

	'abstract'

	'title'

	'month'

	'year'

	'journal'

	'beginningPage'

	'DOI'

specialFuncs when given one of these must raise a KeyError or
return an object of the same type as that returned by the
MedlineRecord or WOSRecord. e.g. 'title' would return a
string giving the title of the record.

For an example of how this works lets first look at the 'SO' tag on
a WOSRecord accessed with the alternate name 'journal'.

t = R['journal']

First the private dictionary _computedFields is checked for the key
'title', which will fail if this is the first time 'journal' or
'SO' has been requested, after this the results will be added to the
dictionary to speed up future requests.

Then the fieldDict will be checked for the key and when that fails the
key will go through getAltName and be checked again. If the record
had a journal entry this will succeed and the raw data will be given to
the tagProcessingFunc using the same key as fieldDict, in this
case SO.

The results will then be written to _computedFields and returned.

If the requested key was instead 'grants' (g = R['grants'])the
both lookups to fieldDict would have failed and the string
'grants' would have been given to specialFuncs which would
return a list of all the grants in the WOSRecord (this is always
[] as WOS does not provided grant information).

What if the key were not present anywhere? Then the specialFuncs
should raise a KeyError which will be caught then re-raised like a
dictionary would with an invalid key look up.

File Handling fields

The two other required methods encoding and writeRecord define
how the records can be rewritten to a file. encoding is should
return a string giving the encoding python would use, e.g. 'utf-8'
or 'latin-1'. This is the same encoding that the files written by
writeRecord should have, writeRecord when called should write
the original record to the provided open file, infile. The opening,
closing, header and footer of the file will be handled by
RecordCollection’s writeFile function which should me modified
accordingly. If the order of the fields in a record is important you can
use a
collections.OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict]
for fieldDict.

__Init__

The __init__ of ExtendedRecord takes the same arguments as
Record

	
__contains__(item)

	Checks if the tag item is in the Record

	
__getitem__(key)

	Processes the tag requested with key and memoize it.

Allows long names, but will still raise a KeyError if the tag is
missing, regardless of name used.

	
__init__(fieldDict, idValue, bad, error, sFile='', sLine=0)

	Base constructor for Records

fieldDict : is the unpared entry dict with tags as keys and their
lines as a list of strings

idValue : is the unique ID of the Record, e.g. the WOS number

titleKey : is the tag giving the title of the Record, e.g. the WOS tag
is 'TI'

bad : is the bool to flag the Record as having encountered an errror

error : is the error that bad indicates

sFile : is the name of the source file

sLine : is the line number of the start of the Record entry

altNames : is a dict that maps the names of tags to an alternative
name, i.e. the long names dict. It must be bidirectional: map long
to short and short to long

proccessingFuncs : is a dict of functions to proccess the tags. It has
the short names as keys and their proccessing fucntions as values.
Missing tags will result in the unparsed value to be returned.

The Records inheting from this must implement, calling the
implementations in Record with super() will not cause errors:

	writeRecord

	tagProcessingFunc

	encoding

	titleTag

	getAltName

	
authGenders(countsOnly=False, fractionsMode=False, _countsTuple=False)

	Creates a dict mapping 'Male', 'Female' and 'Unknown' to
lists of the names of all the authors.

	
bibString(maxLength=1000, WOSMode=False, restrictedOutput=False, niceID=True)

	Makes a string giving the Record as a bibTex entry. If the Record is of
a journal article (PT J) the bibtext type is set to 'article',
otherwise it is set to 'misc'. The ID of the entry is the WOS number
and all the Record’s fields are given as entries with their long names.

Note This is not meant to be used directly with LaTeX none of the
special characters have been escaped and there are a large number of
unnecessary fields provided. niceID and maxLength have been provided
to make conversions easier.

Note Record entries that are lists have their values seperated with
the string ' and '

	
createCitation(multiCite=False)

	Creates a citation string, using the same format as other WOS citations,
for the Record by reading the
relevant special tags ('year', 'J9', 'volume',
'beginningPage', 'DOI') and using it to create a
Citation object.

	
encoding()

	An abstractmethod, gives the encoding string of the record.

	
get(tag, default=None, raw=False)

	Allows access to the raw values or is an Exception safe wrapper to
__getitem__.

	
static getAltName(tag)

	An abstractmethod, gives the alternate name of tag or None

	
getCitations(field=None, values=None, pandasFriendly=True)

	Creates a pandas ready dict with each row a different citation and
columns containing the original string, year, journal and author’s name.

There are also options to filter the output citations with field and
values

	
items(raw=False)

	Like items for dicts but with a raw option

	
specialFuncs(key)

	An abstractmethod, process the special tag, key using the whole
Record

	
subDict(tags, raw=False)

	Creates a dict of values of tags from the Record. The tags are the
keys and the values are the values. If the tag is missing the value will
be None.

	
static tagProcessingFunc(tag)

	An abstractmethod, gives the function for processing tag

	
values(raw=False)

	Like values for dicts but with a raw option

	
writeRecord(infile)

	An abstractmethod, writes the record in its original form to
infile

FallbackGrant(Grant)

	
class metaknowledge.grants.FallbackGrant(original, grantdDict, sFile='', sLine=0)

	A subclass of Grant, it
has the same attributes and is returned from the fall back constructor
for grants.

	
__init__(original, grantdDict, sFile='', sLine=0)

	Initialize self. See help(type(self)) for accurate signature.

Grant(Record, MutableMapping)

	
class metaknowledge.grants.Grant(original, grantdDict, idValue, bad, error, sFile='', sLine=0)

	
	
__init__(original, grantdDict, idValue, bad, error, sFile='', sLine=0)

	Initialize self. See help(type(self)) for accurate signature.

	
getInstitutions(tags=None, seperator=';', _getTag=False)

	Returns a list of the names of institutions. This is done by looking (in
order) for any of fields in tags and splitting the strings on
seperator (in case of multiple institutions). If no strings are found
an empty list will be returned.

Note for some Grants getInstitutions has been overwritten and will
ignore the arguments and simply provide the investigators.

Parameters

tags : optional list[str]

A list of the tags to look for institutions in

seperator : optional str

The string that separators each institutions name within the column

Returns

list [str]

A list of all the found institution’s names

	
getInvestigators(tags=None, seperator=';', _getTag=False)

	Returns a list of the names of investigators. This is done by looking
(in order) for any of fields in tags and splitting the strings on
seperator. If no strings are found an empty list will be returned.

Note for some Grants getInvestigators has been overwritten and
will ignore the arguments and simply provide the investigators.

Parameters

tags : optional list[str]

A list of the tags to look for investigators in

seperator : optional str

The string that separators each investigators name within the column

Returns

list [str]

A list of all the found investigator’s names

	
update(other)

	Adds all the tag-entry pairs from other to the Grant. If there is
a conflict other takes precedence.

Parameters

other : Grant

Another Grant of the same type as self

GrantCollection(CollectionWithIDs)

	
class metaknowledge.GrantCollection(inGrants=None, name='', extension='', cached=False, quietStart=False)

	
	
__init__(inGrants=None, name='', extension='', cached=False, quietStart=False)

	Basically a collections.abc.MutableSet wrapper for a set with a bunch of
extra record keeping attached.

	
networkCoInvestigator(targetTags=None, tagSeperator=';', count=True, weighted=True, _institutionLevel=False)

	Creates a co-investigator from the collection

Most grants do not have a known investigator tag so it must be provided
by the user in targetTags and the separator character if it is not a
semicolon should also be given.

Parameters

targetTags : optional list[str]

A list of all the Grant tags to check for investigators

tagSeperator : optional str

The character that separates the individual investigator’s names

count : optional bool

Default True, if True the number of time a name occurs will
be given

weighted : optional bool

Default True, if True the edge weights will be calculated
and added to the edges

Returns

networkx Graph

The graph of co-investigator

	
networkCoInvestigatorInstitution(targetTags=None, tagSeperator=';', count=True, weighted=True)

	This works the same as
networkCoInvestigator()
see it for details.

MedlineGrant(Grant)

	
class metaknowledge.MedlineGrant(grantString)

	
	
__init__(grantString)

	Initialize self. See help(type(self)) for accurate signature.

MedlineRecord(ExtendedRecord)

	
class metaknowledge.medline.MedlineRecord(inRecord, sFile='', sLine=0)

	Class for full Medline(Pubmed) entries.

This class is an
ExtendedRecord
capable of generating its own id number. You should not create them
directly, but instead use
medlineParser()
on a medline file.

	
__init__(inRecord, sFile='', sLine=0)

	Base constructor for Records

fieldDict : is the unpared entry dict with tags as keys and their
lines as a list of strings

idValue : is the unique ID of the Record, e.g. the WOS number

titleKey : is the tag giving the title of the Record, e.g. the WOS tag
is 'TI'

bad : is the bool to flag the Record as having encountered an errror

error : is the error that bad indicates

sFile : is the name of the source file

sLine : is the line number of the start of the Record entry

altNames : is a dict that maps the names of tags to an alternative
name, i.e. the long names dict. It must be bidirectional: map long
to short and short to long

proccessingFuncs : is a dict of functions to proccess the tags. It has
the short names as keys and their proccessing fucntions as values.
Missing tags will result in the unparsed value to be returned.

The Records inheting from this must implement, calling the
implementations in Record with super() will not cause errors:

	writeRecord

	tagProcessingFunc

	encoding

	titleTag

	getAltName

	
encoding()

	An abstractmethod, gives the encoding string of the record.

Returns

str

The encoding

	
static getAltName(tag)

	An abstractmethod, gives the alternate name of tag or None

Parameters

tag : str

The requested tag

Returns

str

The alternate name of tag or None

	
specialFuncs(key)

	An abstractmethod, process the special tag, key using the whole
Record

Parameters

key : str

One of the special tags: 'authorsFull', 'keywords',
'grants', 'j9', 'authorsShort', 'volume',
'selfCitation', 'citations', 'address', 'abstract',
'title', 'month', 'year', 'journal',
'beginningPage' and 'DOI'

Returns

The processed value of key

	
static tagProcessingFunc(tag)

	An abstractmethod, gives the function for processing tag

Parameters

tag : optional [str]

The tag in need of processing

Returns

function

The function to process the raw tag

	
writeRecord(f)

	This is nearly identical to the original the FAU tag is the only tag not
writen in the same place, doing so would require changing the parser and
lots of extra logic.

NSERCGrant(Grant)

	
class metaknowledge.grants.NSERCGrant(original, grantdDict, sFile, sLine)

	
	
__init__(original, grantdDict, sFile, sLine)

	Initialize self. See help(type(self)) for accurate signature.

	
getInstitutions(tags=None, seperator=';', _getTag=False)

	Returns a list with the names of the institution. The optional arguments
are ignored

Returns

list [str]

A list with 1 entry the name of the institution

	
getInvestigators(tags=None, seperator=';', _getTag=False)

	Returns a list of the names of investigators. The optional arguments are
ignored.

Returns

list [str]

A list of all the found investigator’s names

	
update(other)

	Adds all the tag-entry pairs from other to the Grant. If there is
a conflict other takes precedence.

Parameters

other : Grant

Another Grant of the same type as self

NSFGrant(Grant)

	
class metaknowledge.grants.NSFGrant(grantdDict, sFile)

	
	
__init__(grantdDict, sFile)

	Initialize self. See help(type(self)) for accurate signature.

	
getInstitutions(tags=None, seperator=';', _getTag=False)

	Returns a list with the names of the institution. The optional arguments
are ignored

Returns

list [str]

A list with 1 entry the name of the institution

	
getInvestigators(tags=None, seperator=';', _getTag=False)

	Returns a list of the names of investigators. The optional arguments are
ignored.

Returns

list [str]

A list of all the found investigator’s names

ProQuestRecord(ExtendedRecord)

	
class metaknowledge.proquest.ProQuestRecord(inRecord, recNum=None, sFile='', sLine=0)

	Class for full ProQuest entries.

This class is an
ExtendedRecord
capable of generating its own id number. You should not create them
directly, but instead use
proQuestParser()
on a ProQuest file.

	
__init__(inRecord, recNum=None, sFile='', sLine=0)

	Base constructor for Records

fieldDict : is the unpared entry dict with tags as keys and their
lines as a list of strings

idValue : is the unique ID of the Record, e.g. the WOS number

titleKey : is the tag giving the title of the Record, e.g. the WOS tag
is 'TI'

bad : is the bool to flag the Record as having encountered an errror

error : is the error that bad indicates

sFile : is the name of the source file

sLine : is the line number of the start of the Record entry

altNames : is a dict that maps the names of tags to an alternative
name, i.e. the long names dict. It must be bidirectional: map long
to short and short to long

proccessingFuncs : is a dict of functions to proccess the tags. It has
the short names as keys and their proccessing fucntions as values.
Missing tags will result in the unparsed value to be returned.

The Records inheting from this must implement, calling the
implementations in Record with super() will not cause errors:

	writeRecord

	tagProcessingFunc

	encoding

	titleTag

	getAltName

	
encoding()

	An abstractmethod, gives the encoding string of the record.

Returns

str

The encoding

	
static getAltName(tag)

	An abstractmethod, gives the alternate name of tag or None

Parameters

tag : str

The requested tag

Returns

str

The alternate name of tag or None

	
specialFuncs(key)

	An abstractmethod, process the special tag, key using the whole
Record

Parameters

key : str

One of the special tags: 'authorsFull', 'keywords',
'grants', 'j9', 'authorsShort', 'volume',
'selfCitation', 'citations', 'address', 'abstract',
'title', 'month', 'year', 'journal',
'beginningPage' and 'DOI'

Returns

The processed value of key

	
static tagProcessingFunc(tag)

	An abstractmethod, gives the function for processing tag

Parameters

tag : optional [str]

The tag in need of processing

Returns

function

The function to process the raw tag

	
writeRecord(infile)

	An abstractmethod, writes the record in its original form to
infile

Parameters

infile : writable file

The file to be written to

Record(Mapping, Hashable)

	
class metaknowledge.Record(fieldDict, idValue, bad, error, sFile='', sLine=0)

	A dictionary with error handling and an id string.

Record is the base class of the all objects in metaknowledge that
contain information as key-value pairs, these are the grants and the
records from different sources.

The error handling of the Record is done with the bad attribute.
If there is some issue with the data bad should be True and
error given an Exception that was caused by or explains the error.

Customizations

Record is a subclass of abc.collections.Mapping which means it
has almost all the methods a dictionary does, the missing ones are those
that modify entries. So to access the value of the key 'title' from
a Record R, you would use either the square brace notation
t = R['title'] or the get() function t = R.get('title') just
like a dictionary. The other methods like keys() or copy() also
work.

In addition to being a mapping Records are also hashable with their
hashes being based on a unique id string they are given on creation,
usually some kind of accession number the source gives them. The two
optional arguments sFile and sLine, which should be given the name
of the file the records came from and the line it started on
respectively, are used to make the errors more useful.

__Init__

fieldDict is the dictionary the Record will use and idValue is
the unique identifier of the Record.

Parameters

fieldDict : dict[str:]

A dictionary that maps from strings to values

idValue : str

A unique identifier string for the Record

bad : bool

True if there are issues with the Record, otherwise
False

error : Exception

The Exception that caused whatever error made the record be
marked as bad or None

sFile : str

A string that gives the source file of the original records

sLine : int

The first line the original record is found on in the source file

	
__bytes__()

	Returns the binary form of the original

	
__contains__(item)

	Checks if the tag item is in the Record

	
__eq__(other)

	Compares Records using their hashes if their hashes are the same
then True is returned.

	
__getitem__(key)

	This is redfined as something interesting for ExtendedRecord

	
__hash__()

	Gives a hash of the id or if bad returns a hash of the fields
combined with the error messages, either of these could be blank

bad Records are more likely to cause hash collisions due to their
lack of entropy when created.

	
__init__(fieldDict, idValue, bad, error, sFile='', sLine=0)

	Initialize self. See help(type(self)) for accurate signature.

	
__iter__()

	Iterates over the tags in the Record

	
__len__()

	Returns the number of tags

	
__repr__()

	Makes a string with the id of the file and its type

	
__str__()

	Makes a string with the title of the file as given by self.title, if
there is not one it returns “Untitled record”

	
__weakref__

	list of weak references to the object (if defined)

	
copy()

	Correctly copies the Record

RecordCollection(CollectionWithIDs)

	
class metaknowledge.RecordCollection(inCollection=None, name='', extension='', cached=False, quietStart=False)

	A container for a large number of indivual records.

RecordCollection provides ways of creating
Records from an isi file,
string, list of records or directory containing isi files.

When being created if there are issues the Record collection will be
declared bad, bad wil be set to False, it will then mostly
return None or False. The attribute error contains the exception
that occurred.

They also possess an attribute name also accessed with
__repr__(), this is used to auto generate the names of files and can
be set at creation, note though that any operations that modify the
RecordCollection’s contents will update the name to include what
occurred.

Customizations

The Records are containing within a set and as such many of the set
operations are defined, pop, union, in … also records are hashed with
their WOS string so no duplication can occur. The comparison operators
<, <=, >, >= are based strictly on the number of Records
within the collection, while equality looks for an exact match on the
Records

__Init__

inCollection is the object containing the information about the
Records to be constructed it can be an isi file, string, list of records
or directory containing isi files

Parameters

inCollection : optional [str] or None

the name of the source of WOS records. It can be skipped to produce
an empty collection.

If a file is provided. First it is checked to see if it is a WOS
file (the header is checked). Then records are read from it one by
one until the ‘EF’ string is found indicating the end of the file.

If a directory is provided. First each file in the directory is
checked for the correct header and all those that do are then read
like indivual files. The records are then collected into a single
set in the RecordCollection.

name : optional [str]

The name of the RecordCollection, defaults to empty string. If left
empty the name of the Record collection is set to the name of the
file or directory used to create the collection. If provided the
name id set to name

extension : optional [str]

The extension to search for when reading a directory for files.
extension is the suffix searched for when a directory is read for
files, by default it is empty so all files are read.

cached : optional [bool]

Default False, if True and the inCollection is a directory
(a string giving the path to a directory) then the initialized
RecordCollection will be saved in the directory as a Python
pickle with the suffix '.mkDirCache'. Then if the
RecordCollection is initialized a second time it will be
recovered from the file, which is much faster than reprising every
file in the directory.

metaknowledge saves the names of the parsed files as well as their
last modification times and will check these when recreating the
RecordCollection, so modifying existing files or adding new ones
will result in the entire directory being reanalyzed and a new cache
file being created. The extension given to __init__() is taken
into account as well and each suffix is given its own cache.

Note The pickle allows for arbitrary python code execution so
only use caches that you trust.

	
__init__(inCollection=None, name='', extension='', cached=False, quietStart=False)

	Basically a collections.abc.MutableSet wrapper for a set with a bunch of
extra record keeping attached.

	
citeFilter(keyString='', field='all', reverse=False, caseSensitive=False)

	Filters Records by some string, keyString, in their citations and
returns all Records with at least one citation possessing
keyString in the field given by field.

	
dropNonJournals(ptVal='J', dropBad=True, invert=False)

	Drops the non journal type Records from the collection, this is done
by checking ptVal against the PT tag

	
findProbableCopyright()

	Finds the (likely) copyright string from all abstracts in the
RecordCollection

	
forBurst(tag, outputFile=None, dropList=None, lower=True, removeNumbers=True, removeNonWords=True, removeWhitespace=True, stemmer=None)

	Creates a pandas friendly dictionary with 2 columns one 'year' and
the other 'word'. Each row is a word that occurred in the field
given by tag in a Record and the year of the record. Unfortunately
getting the month or day with any type of accuracy has proved to be
impossible so year is the only option.

	
forNLP(outputFile=None, extraColumns=None, dropList=None, lower=True, removeNumbers=True, removeNonWords=True, removeWhitespace=True, removeCopyright=False, stemmer=None)

	Creates a pandas friendly dictionary with each row a Record in the
RecordCollection and the columns fields natural language processing
uses (id, title, publication year, keywords and the abstract). The
abstract is by default is processed to remove non-word, non-space
characters and the case is lowered.

	
genderStats(asFractions=False)

	Creates a dict
({'Male' : maleCount, 'Female' : femaleCount, 'Unknown' : unknownCount})
with the numbers of male, female and unknown names in the collection.

	
getCitations(field=None, values=None, pandasFriendly=True, counts=True)

	Creates a pandas ready dict with each row a different citation the
contained Records and columns containing the original string, year,
journal, author’s name and the number of times it occured.

There are also options to filter the output citations with field and
values

	
localCiteStats(pandasFriendly=False, keyType='citation')

	Returns a dict with all the citations in the CR field as keys and the
number of times they occur as the values

	
localCitesOf(rec)

	Takes in a Record, WOS string, citation string or Citation and returns a
RecordCollection of all records that cite it.

	
makeDict(onlyTheseTags=None, longNames=False, raw=False, numAuthors=True, genderCounts=True)

	Returns a dict with each key a tag and the values being lists of the
values for each of the Records in the collection, None is given when
there is no value and they are in the same order across each tag.

When used with pandas: pandas.DataFrame(RC.makeDict()) returns a
data frame with each column a tag and each row a Record.

	
networkBibCoupling(weighted=True, fullInfo=False, addCR=False)

	Creates a bibliographic coupling network based on citations for the
RecordCollection.

	
networkCitation(dropAnon=False, nodeType='full', nodeInfo=True, fullInfo=False, weighted=True, dropNonJournals=False, count=True, directed=True, keyWords=None, detailedCore=True, detailedCoreAttributes=False, coreOnly=False, expandedCore=False, recordToCite=True, addCR=False, _quiet=False)

	Creates a citation network for the RecordCollection.

	
networkCoAuthor(detailedInfo=False, weighted=True, dropNonJournals=False, count=True, useShortNames=False, citeProfile=False)

	Creates a coauthorship network for the RecordCollection.

	
networkCoCitation(dropAnon=True, nodeType='full', nodeInfo=True, fullInfo=False, weighted=True, dropNonJournals=False, count=True, keyWords=None, detailedCore=True, detailedCoreAttributes=False, coreOnly=False, expandedCore=False, addCR=False)

	Creates a co-citation network for the RecordCollection.

	
rpys(minYear=None, maxYear=None, dropYears=None, rankEmptyYears=False)

	This implements Referenced Publication Years Spectroscopy a techinique
for finding import years in citation data. The authors of the original
papers have a website with more information, found
here [http://www.leydesdorff.net/software/rpys/].

This function computes the spectra of the RecordCollection and
returns a dictionary mapping strings to lists of ints. Each list is
ordered and the values of each with the same index form a row and each
list a column. The strings are the names of the columns. This is
intended to be read directly by pandas DataFrames.

The columns returned are:

	'year', the years of the counted citations, missing years are
inserted with a count of 0, unless they are outside the bounds of the
highest year or the lowest year and the default value is used. e.g.
if the highest year is 2016, 2017 will not be inserted unless
maxYear has been set to 2017 or higher

	'count', the number of times the year was cited

	'abs-deviation', deviation from the 5-year median. Calculated by
taking the absolute deviation of the count from the median of it and
the next 2 years and the preceding 2 years

	'rank', the rank of the year, the highest ranked year being the
one with the highest deviation, the second highest being the second
highest deviation and so on. All years with 0 count are given the
rank 0 by default

	
writeBib(fname=None, maxStringLength=1000, wosMode=False, reducedOutput=False, niceIDs=True)

	Writes a bibTex entry to fname for each Record in the collection.

If the Record is of a journal article (PT J) the bibtext type is set to
'article', otherwise it is set to 'misc'. The ID of the entry is
the WOS number and all the Record’s fields are given as entries with
their long names.

Note This is not meant to be used directly with LaTeX none of the
special characters have been escaped and there are a large number of
unnecessary fields provided. niceID and maxLength have been provided
to make conversions easier only.

Note Record entries that are lists have their values separated with
the string ' and ', as this is the way bibTex understands

	
writeCSV(fname=None, splitByTag=None, onlyTheseTags=None, numAuthors=True, genderCounts=True, longNames=False, firstTags=None, csvDelimiter=', ', csvQuote='"', listDelimiter='|')

	Writes all the Records from the collection into a csv file with each
row a record and each column a tag.

	
writeFile(fname=None)

	Writes the RecordCollection to a file, the written file’s format is
identical to those download from WOS. The order of Records written
is random.

	
yearSplit(startYear, endYear, dropMissingYears=True)

	Creates a RecordCollection of Records from the years between startYear
and endYear inclusive.

ScopusRecord(ExtendedRecord)

	
class metaknowledge.scopus.ScopusRecord(inRecord, sFile='', sLine=0, header=None)

	Class for full Scopus entries.

This class is an
ExtendedRecord
capable of generating its own id number. You should not create them
directly, but instead use
scopusParser()
on a scopus CSV file.

	
__init__(inRecord, sFile='', sLine=0, header=None)

	Base constructor for Records

fieldDict : is the unpared entry dict with tags as keys and their
lines as a list of strings

idValue : is the unique ID of the Record, e.g. the WOS number

titleKey : is the tag giving the title of the Record, e.g. the WOS tag
is 'TI'

bad : is the bool to flag the Record as having encountered an errror

error : is the error that bad indicates

sFile : is the name of the source file

sLine : is the line number of the start of the Record entry

altNames : is a dict that maps the names of tags to an alternative
name, i.e. the long names dict. It must be bidirectional: map long
to short and short to long

proccessingFuncs : is a dict of functions to proccess the tags. It has
the short names as keys and their proccessing fucntions as values.
Missing tags will result in the unparsed value to be returned.

The Records inheting from this must implement, calling the
implementations in Record with super() will not cause errors:

	writeRecord

	tagProcessingFunc

	encoding

	titleTag

	getAltName

	
createCitation(multiCite=False)

	Overwriting the general citation
creator
to deal with scopus weirdness.

Creates a citation string, using the same format as other WOS citations,
for the Record by reading the
relevant special tags ('year', 'J9', 'volume',
'beginningPage', 'DOI') and using it to create a
Citation object.

Parameters

multiCite : optional [bool]

Default False, if True a tuple of Citations is returned with
each having a different one of the records authors as the author

Returns

Citation

A Citation
object containing a citation for the Record.

	
encoding()

	An abstractmethod, gives the encoding string of the record.

Returns

str

The encoding

	
static getAltName(tag)

	An abstractmethod, gives the alternate name of tag or None

Parameters

tag : str

The requested tag

Returns

str

The alternate name of tag or None

	
specialFuncs(key)

	An abstractmethod, process the special tag, key using the whole
Record

Parameters

key : str

One of the special tags: 'authorsFull', 'keywords',
'grants', 'j9', 'authorsShort', 'volume',
'selfCitation', 'citations', 'address', 'abstract',
'title', 'month', 'year', 'journal',
'beginningPage' and 'DOI'

Returns

The processed value of key

	
static tagProcessingFunc(tag)

	An abstractmethod, gives the function for processing tag

Parameters

tag : optional [str]

The tag in need of processing

Returns

function

The function to process the raw tag

	
writeRecord(f)

	An abstractmethod, writes the record in its original form to
infile

Parameters

infile : writable file

The file to be written to

WOSRecord(ExtendedRecord)

	
class metaknowledge.WOS.WOSRecord(inRecord, sFile='', sLine=0)

	Class for full WOS records

It is meant to be immutable; many of the methods and attributes are
evaluated when first called, not when the object is created, and the
results are stored privately.

The record’s meta-data is stored in an ordered dictionary labeled by WOS
tags. To access the raw data stored in the original record the
tags()
method can be used. To access data that has been processed and cleaned
the attributes named after the tags are used.

Customizations

The Record’s hashing and equality testing are based on the WOS
number (the tag is ‘UT’, and also called the accession number). They are
strings starting with 'WOS:' and followed by 15 or so numbers and
letters, although both the length and character set are known to vary.
The numbers are unique to each record so are used for comparisons. If a
record is bad all equality checks return False.

When converted to a string the records title is used so for a record
R, R.TI == R.title == str(R) and its representation uses the WOS
number instead of memory location.

Attributes

When a record is created if the parsing of the WOS file failed it is
marked as bad. The bad attribute is set to True and the
error attribute is created to contain the exception object.

Generally, to get the information from a Record its attributes should be
used. For a Record R, calling R.CR causes
citations()
from the the
tagProcessing
module to be called on the contents of the raw ‘CR’ field. Then the
result is saved and returned. In this case, a list of Citation objects
is returned. You can also call R.citations to get the same effect,
as each known field tag has a longer name (currently there are 61 field
tags). These names are meant to make accessing tags more readable and
mapping from tag to name can be found in the tagToFull dict. If a tag is
known (in
tagToFull)
but not in the raw data None is returned instead. Most tags when
cleaned return a string or list of strings, the exact results can be
found in the help for the particular function.

The attribute authors is also defined as a convenience and returns
the same as ‘AF’ or if that is not found ‘AU’.

__Init__

Records are generally created as collections in
Recordcollections,
and not as individual objects. If you wish to create one on its own it
is possible, the arguments are as follows.

Parameters

inRecord: files stream, dict, str or itertools.chain

If it is a file stream the file must be open at the location of the
first tag in the record, usually ‘PT’, and the file will be read
until ‘ER’ is found, which indicates the end of the record in the
file.

If a dict is passed the dictionary is used as the database of fields
and tags, so each key is considered a WOS tag and each value a list
of the lines of the original associated with the tag. This is the
same form of dict that
recordParser
returns.

For a string the input must be the raw textual data of a single
record in the WOS style, like the file stream it must start at the
first tag and end in 'ER'.

itertools.chain is treated identically to a file stream and is used
by
RecordCollections.

sFile : optional [str]

Is the name of the file the raw data was in, by default it is blank.
It is mostly used to make error messages more informative.

sLine : optional [int]

Is the line the record starts on in the raw data file. It is mostly
used to make error messages more informative.

	
UT

	Returns the UT tag (WOS number) of the record

	
__init__(inRecord, sFile='', sLine=0)

	See help on Record for details

	
encoding()

	An abstractmethod, gives the encoding string of the record.

	
static getAltName(tag)

	An abstractmethod, gives the alternate name of tag or None

	
specialFuncs(key)

	An abstractmethod, process the special tag, key using the whole
Record

	
static tagProcessingFunc(tag)

	An abstractmethod, gives the function for processing tag

	
wosString

	Returns the WOS number (UT tag) of the record

	
writeRecord(infile)

	Writes to infile the original contents of the Record. This is intended
for use by
RecordCollections
to write to file. What is written to infile is bit for bit identical
to the original record file (if utf-8 is used). No newline is inserted
above the write but the last character is a newline.

Functions

	
metaknowledge.citation.filterNonJournals(citesLst, invert=False)

	Removes the Citations from citesLst that are not journals

Parameters

citesLst : list [Citation]

A list of citations to be filtered

invert : optional [bool]

Default False, if True non-journals will be kept instead of
journals

Returns

list [Citation]

A filtered list of Citations from citesLst

	
metaknowledge.constants.isInteractive()

	A basic check of if the program is running in interactive mode

	
metaknowledge.diffusion.diffusionAddCountsFromSource(grph, source, target, nodeType='citations', extraType=None, diffusionLabel='DiffusionCount', extraKeys=None, countsDict=None, extraMapping=None)

	Does a diffusion using
diffusionCount() and
updates grph with it, using the nodes in the graph as keys in the
diffusion, i.e. the source. The name of the attribute the counts are
added to is given by diffusionLabel. If the graph is not composed of
citations from the source and instead is another tag nodeType needs to
be given the tag string.

Parameters

grph : networkx Graph

The graph to be updated

source : RecordCollection

The RecordCollection that created grph

target : RecordCollection

The RecordCollection that will be counted

nodeType : optional [str]

default 'citations', the tag that constants the values used to
create grph

Returns

dict[:int]

The counts dictioanry used to add values to grph. Note grph is
modified by the function and the return is done in case you need it.

	
metaknowledge.diffusion.diffusionCount(source, target, sourceType='raw', extraValue=None, pandasFriendly=False, compareCounts=False, numAuthors=True, useAllAuthors=True, _ProgBar=None, extraMapping=None)

	Takes in two
RecordCollections
and produces a dict counting the citations of source by the
Records of target.
By default the dict uses Record objects as keys but this can be
changed with the sourceType keyword to any of the WOS tags.

Parameters

source : RecordCollection

A metaknowledge RecordCollection containing the Records
being cited

target : RecordCollection

A metaknowledge RecordCollection containing the Records
citing those in source

sourceType : optional [str]

default 'raw', if 'raw' the returned dict will contain
Records as keys. If it is a WOS tag the keys will be of that
type.

pandasFriendly : optional [bool]

default False, makes the output be a dict with two keys one
"Record" is the list of Records (or data type requested by
sourceType) the other is their occurrence counts as "Counts".
The lists are the same length.

compareCounts : optional [bool]

default False, if True the diffusion analysis will be run
twice, first with source and target setup like the default (global
scope) then using only the source RecordCollection (local
scope).

extraValue : optional [str]

default None, if a tag the returned dictionary will have
Records mapped to maps, these maps will map the entries for the
tag to counts. If pandasFriendly is also True the resultant
dictionary will have an additional column called 'year'. This
column will contain the year the citations occurred, in addition the
Records entries will be duplicated for each year they occur in.

For example if 'year' was given then the count for a single
Record could be {1990 : 1, 2000 : 5}

useAllAuthors : optional [bool]

default True, if False only the first author will be used to
generate the Citations for the source Records

Returns

dict[:int]

A dictionary with the type given by sourceType as keys and
integers as values.

If compareCounts is True the values are tuples with the first
integer being the diffusion in the target and the second the
diffusion in the source.

If pandasFriendly is True the returned dict has keys with the
names of the WOS tags and lists with their values, i.e. a table with
labeled columns. The counts are in the column named
"TargetCount" and if compareCounts the local count is in a
column called "SourceCount".

	
metaknowledge.diffusion.diffusionGraph(source, target, weighted=True, sourceType='raw', targetType='raw', labelEdgesBy=None)

	Takes in two
RecordCollections
and produces a graph of the citations of source by the
Records in target.
By default the nodes in the are Record objects but this can be
changed with the sourceType and targetType keywords. The edges of
the graph go from the target to the source.

Each node on the output graph has two boolean attributes, "source"
and "target" indicating if they are targets or sources. Note, if the
types of the sources and targets are different the attributes will not
be checked for overlap of the other type. e.g. if the source type is
'TI' (title) and the target type is 'UT' (WOS number), and there
is some overlap of the targets and sources. Then the Record
corresponding to a source node will not be checked for being one of the
titles of the targets, only its WOS number will be considered.

Parameters

source : RecordCollection

A metaknowledge RecordCollection containing the Records
being cited

target : RecordCollection

A metaknowledge RecordCollection containing the Records
citing those in source

weighted : optional [bool]

Default True, if True each edge will have an attribute
'weight' giving the number of times the source has referenced
the target.

sourceType : optional [str]

Default 'raw', if 'raw' the returned graph will contain
Records as source nodes.

If Records are not wanted then it can be set to a WOS tag, such as
'SO' (for journals), to make the nodes into the type of object
returned by that tag from Records.

targetType : optional [str]

Default 'raw', if 'raw' the returned graph will contain
Records as target nodes.

If Records are not wanted then it can be set to a WOS tag, such as
'SO' (for journals), to make the nodes into the type of object
returned by that tag from Records.

labelEdgesBy : optional [str]

Default None, if a WOS tag (or long name of WOS tag) then the
edges of the output graph will have a attribute 'key' that is
the value of the referenced tag, of source Record, i.e. if
'PY' is given then each edge will have a 'key' value equal
to the publication year of the source.

This option will cause the output graph to be an MultiDiGraph
and is likely to result in parallel edges. If a Record has
multiple values for at tag (e.g. 'AF') the each tag will create
its own edge.

Returns

networkx Directed Graph or networkx multi Directed Graph

A directed graph of the diffusion network, labelEdgesBy is used
the graph will allow parallel edges.

	
metaknowledge.diffusion.makeNodeID(Rec, ndType, extras=None)

	Helper to make a node ID, extras is currently not used

	
metaknowledge.graphHelpers.dropEdges(grph, minWeight=-inf, maxWeight=inf, parameterName='weight', ignoreUnweighted=False, dropSelfLoops=False)

	Modifies grph by dropping edges whose weight is not within the
inclusive bounds of minWeight and maxWeight, i.e after running
grph will only have edges whose weights meet the following inequality:
minWeight <= edge’s weight <= maxWeight. A Keyerror will be
raised if the graph is unweighted unless ignoreUnweighted is True,
the weight is determined by examining the attribute parameterName.

Note: none of the default options will result in grph being
modified so only specify the relevant ones, e.g.
dropEdges(G, dropSelfLoops = True) will remove only the self loops
from G.

Parameters

grph : networkx Graph

The graph to be modified.

minWeight : optional [int or double]

default -inf, the minimum weight for an edge to be kept in the
graph.

maxWeight : optional [int or double]

default inf, the maximum weight for an edge to be kept in the
graph.

parameterName : optional [str]

default 'weight', key to weight field in the edge’s attribute
dictionary, the default is the same as networkx and metaknowledge so
is likely to be correct

ignoreUnweighted : optional [bool]

default False, if True unweighted edges will kept

dropSelfLoops : optional [bool]

default False, if True self loops will be removed regardless
of their weight

	
metaknowledge.graphHelpers.dropNodesByCount(grph, minCount=-inf, maxCount=inf, parameterName='count', ignoreMissing=False)

	Modifies grph by dropping nodes that do not have a count that is
within inclusive bounds of minCount and maxCount, i.e after running
grph will only have nodes whose degrees meet the following inequality:
minCount <= node’s degree <= maxCount.

Count is determined by the count attribute, parameterName, and if
missing will result in a KeyError being raised. ignoreMissing can
be set to True to suppress the error.

minCount and maxCount default to negative and positive infinity
respectively so without specifying either the output should be the input

Parameters

grph : networkx Graph

The graph to be modified.

minCount : optional [int or double]

default -inf, the minimum Count for an node to be kept in the
graph.

maxCount : optional [int or double]

default inf, the maximum Count for an node to be kept in the
graph.

parameterName : optional [str]

default 'count', key to count field in the nodes’s attribute
dictionary, the default is the same thoughout metaknowledge so is
likely to be correct.

ignoreMissing : optional [bool]

default False, if True nodes missing a count will be kept in
the graph instead of raising an exception

	
metaknowledge.graphHelpers.dropNodesByDegree(grph, minDegree=-inf, maxDegree=inf, useWeight=True, parameterName='weight', includeUnweighted=True)

	Modifies grph by dropping nodes that do not have a degree that is
within inclusive bounds of minDegree and maxDegree, i.e after
running grph will only have nodes whose degrees meet the following
inequality: minDegree <= node’s degree <= maxDegree.

Degree is determined in two ways, the default useWeight is the weight
attribute of the edges to a node will be summed, the attribute’s name is
parameterName otherwise the number of edges touching the node is used.
If includeUnweighted is True then useWeight will assign a degree
of 1 to unweighted edges.

Parameters

grph : networkx Graph

The graph to be modified.

minDegree : optional [int or double]

default -inf, the minimum degree for an node to be kept in the
graph.

maxDegree : optional [int or double]

default inf, the maximum degree for an node to be kept in the
graph.

useWeight : optional [bool]

default True, if True the the edge weights will be summed to
get the degree, if False the number of edges will be used to
determine the degree.

parameterName : optional [str]

default 'weight', key to weight field in the edge’s attribute
dictionary, the default is the same as networkx and metaknowledge so
is likely to be correct.

includeUnweighted : optional [bool]

default True, if True edges with no weight will be
considered to have a weight of 1, if False they will cause a
KeyError to be raised.

	
metaknowledge.graphHelpers.getNodeDegrees(grph, weightString='weight', strictMode=False, returnType=<class 'int'>, edgeType='bi')

	Retunrs a dictionary of nodes to their degrees, the degree is determined
by adding the weight of edge with the weight being the string
weightString that gives the name of the attribute of each edge containng
thier weight. The Weights are then converted to the type returnType. If
weightString is give as False instead each edge is counted as 1.

edgeType, takes in one of three strings: ‘bi’, ‘in’, ‘out’. ‘bi’ means
both nodes on the edge count it, ‘out’ mans only the one the edge comes
form counts it and ‘in’ means only the node the edge goes to counts it.
‘bi’ is the default. Use only on directional graphs as otherwise the
selected nodes is random.

	
metaknowledge.graphHelpers.getWeight(grph, nd1, nd2, weightString='weight', returnType=<class 'int'>)

	
A way of getting the weight of an edge with or without weight as a
parameter

returns a the value of the weight parameter converted to returnType if
it is given or 1 (also converted) if not

	
metaknowledge.graphHelpers.graphStats(G, stats=('nodes', 'edges', 'isolates', 'loops', 'density', 'transitivity'), makeString=True, sentenceString=False)

	Returns a string or list containing statistics about the graph G.

graphStats() gives 6 different statistics: number of nodes, number
of edges, number of isolates, number of loops, density and transitivity.
The ones wanted can be given to stats. By default a string giving each
stat on a different line it can also produce a sentence containing all
the requested statistics or the raw values can be accessed instead by
setting makeString to False.

Parameters

G : networkx Graph

The graph for the statistics to be determined of

stats : optional [list or tuple [str]]

Default
('nodes', 'edges', 'isolates', 'loops', 'density', 'transitivity'),
a list or tuple containing any number or combination of the strings:

"nodes", "edges", "isolates", "loops", "density"
and `”transitivity”``

At least one occurrence of the corresponding string causes the
statistics to be provided in the string output. For the non-string
(tuple) output the returned tuple has the same length as the input
and each output is at the same index as the string that requested
it, e.g.

stats = ("edges", "loops", "edges")

The return is a tuple with 2 elements the first and last of which
are the number of edges and the second is the number of loops

makeString : optional [bool]

Default True, if True a string is returned if False a
tuple

sentenceString : optional [bool]

Default False : if True the returned string is a sentce,
otherwise each value has a seperate line.

Returns

str or tuple [float and int]

The type is determined by makeString and the layout by stats

	
metaknowledge.graphHelpers.mergeGraphs(targetGraph, addedGraph, incrementedNodeVal='count', incrementedEdgeVal='weight')

	A quick way of merging graphs, this is meant to be quick and is only
intended for graphs generated by metaknowledge. This does not check
anything and as such may cause unexpected results if the source and
target were not generated by the same method.

mergeGraphs() will modify targetGraph in place by adding the
nodes and edges found in the second, addedGraph. If a node or edge
exists targetGraph is given precedence, but the edge and node
attributes given by incrementedNodeVal and incrementedEdgeVal are
added instead of being overwritten.

Parameters

targetGraph : networkx Graph

the graph to be modified, it has precedence.

addedGraph : networkx Graph

the graph that is unmodified, it is added and does not have
precedence.

incrementedNodeVal : optional [str]

default 'count', the name of the count attribute for the graph’s
nodes. When merging this attribute will be the sum of the values in
the input graphs, instead of targetGraph’s value.

incrementedEdgeVal : optional [str]

default 'weight', the name of the weight attribute for the
graph’s edges. When merging this attribute will be the sum of the
values in the input graphs, instead of targetGraph’s value.

	
metaknowledge.graphHelpers.readGraph(edgeList, nodeList=None, directed=False, idKey='ID', eSource='From', eDest='To')

	Reads the files given by edgeList and nodeList and creates a
networkx graph for the files.

This is designed only for the files produced by metaknowledge and is
meant to be the reverse of
writeGraph(), if this does
not produce the desired results the networkx builtin
networkx.read_edgelist() [https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.readwrite.edgelist.read_edgelist.html]
could be tried as it is aimed at a more general usage.

The read edge list format assumes the column named eSource (default
'From') is the source node, then the column eDest (default
'To') givens the destination and all other columns are attributes of
the edges, e.g. weight.

The read node list format assumes the column idKey (default 'ID')
is the ID of the node for the edge list and the resulting network. All
other columns are considered attributes of the node, e.g. count.

Note: If the names of the columns do not match those given to
readGraph() a KeyError exception will be raised.

Note: If nodes appear in the edgelist but not the nodeList they will
be created silently with no attributes.

Parameters

edgeList : str

a string giving the path to the edge list file

nodeList : optional [str]

default None, a string giving the path to the node list file

directed : optional [bool]

default False, if True the produced network is directed from
eSource to eDest

idKey : optional [str]

default 'ID', the name of the ID column in the node list

eSource : optional [str]

default 'From', the name of the source column in the edge list

eDest : optional [str]

default 'To', the name of the destination column in the edge
list

Returns

networkx Graph

the graph described by the input files

	
metaknowledge.graphHelpers.writeEdgeList(grph, name, extraInfo=True, allSameAttribute=False, _progBar=None)

	Writes an edge list of grph at the destination name.

The edge list has two columns for the source and destination of the
edge, 'From' and 'To' respectively, then, if edgeInfo is
True, for each attribute of the node another column is created.

Note: If any edges are missing an attribute it will be left blank by
default, enable allSameAttribute to cause a KeyError to be raised.

Parameters

grph : networkx Graph

The graph to be written to name

name : str

The name of the file to be written

edgeInfo : optional [bool]

Default True, if True the attributes of each edge will be
written

allSameAttribute : optional [bool]

Default False, if True all the edges must have the same
attributes or an exception will be raised. If False the missing
attributes will be left blank.

	
metaknowledge.graphHelpers.writeGraph(grph, name, edgeInfo=True, typing=False, suffix='csv', overwrite=True, allSameAttribute=False)

	Writes both the edge list and the node attribute list of grph to files
starting with name.

The output files start with name, the file type (edgeList,
nodeAttributes) then if typing is True the type of graph (directed or
undirected) then the suffix, the default is as follows:

name_fileType.suffix

Both files are csv’s with comma delimiters and double quote quoting
characters. The edge list has two columns for the source and destination
of the edge, 'From' and 'To' respectively, then, if edgeInfo
is True, for each attribute of the node another column is created.
The node list has one column call “ID” with the node ids used by
networkx and all other columns are the node attributes.

To read back these files use
readGraph() and to write
only one type of lsit use
writeEdgeList() or
writeNodeAttributeFile().

Warning: this function will overwrite files, if they are in the way
of the output, to prevent this set overwrite to False

Note: If any nodes or edges are missing an attribute a KeyError
will be raised.

Parameters

grph : networkx Graph

A networkx graph of the network to be written.

name : str

The start of the file name to be written, can include a path.

edgeInfo : optional [bool]

Default True, if True the the attributes of each edge are
written to the edge list.

typing : optional [bool]

Default False, if True the directed ness of the graph will
be added to the file names.

suffix : optional [str]

Default "csv", the suffix of the file.

overwrite : optional [bool]

Default True, if True files will be overwritten silently,
otherwise an OSError exception will be raised.

	
metaknowledge.graphHelpers.writeNodeAttributeFile(grph, name, allSameAttribute=False, _progBar=None)

	Writes a node attribute list of grph to the file given by the path
name.

The node list has one column call 'ID' with the node ids used by
networkx and all other columns are the node attributes.

Note: If any nodes are missing an attribute it will be left blank by
default, enable allSameAttribute to cause a KeyError to be raised.

Parameters

grph : networkx Graph

The graph to be written to name

name : str

The name of the file to be written

allSameAttribute : optional [bool]

Default False, if True all the nodes must have the same
attributes or an exception will be raised. If False the missing
attributes will be left blank.

	
metaknowledge.graphHelpers.writeTnetFile(grph, name, modeNameString, weighted=False, sourceMode=None, timeString=None, nodeIndexString='tnet-ID', weightString='weight')

	Writes an edge list designed for reading by the R package
tnet [https://toreopsahl.com/tnet/].

The networkx graph provided must be a pure two-mode network, the modes
must be 2 different values for the node attribute accessed by
modeNameString and all edges must be between different node types.
Each node will be given an integer id, stored in the attribute given by
nodeIndexString, these ids are then written to the file as the
endpoints of the edges. Unless sourceMode is given which mode is the
source (first column) and which the target (second column) is random.

Note the grph will be modified by this function, the ids of the
nodes will be written to the graph at the attribute nodeIndexString.

Parameters

grph : network Graph

The graph that will be written to name

name : str

The path of the file to write

modeNameString : str

The name of the attribute grph’s modes are stored in

weighted : optional bool

Default False, if True then the attribute weightString
will be written to the weight column

sourceMode : optional str

Default None, if given the name of the mode used for the source
(first column) in the output file

timeString : optional str

Default None, if present the attribute timeString of an edge
will be written to the time column surrounded by double quotes (“).

Note The format used by tnet for dates is very strict it uses the
ISO format, down to the second and without time zones.

nodeIndexString : optional str

Default 'tnet-ID', the name of the attribute to save the id for
each node

weightString : optional str

Default 'weight', the name of the weight attribute

Record is the base of various objects in mk, it is intended to be
used with things that have some sort of key-value relationship and is
basiclly a hashable python dict. It also has a few extra attributes
intead to make debugging and record keeping easier.

	bad cand be set to True to indcate something is wrong with
the issue being saved in error the exact details are left to
designer

	_sourceFile and _sourceLine store the original file name and
line number and are mostly for improving error messages

	_id should be a unique string, that preferably can be used to
identify the record from its source, although the latter is not
always possible to do so, do your best. It is also what is used for
hashing and comparison

	_fieldDict contains the base mapping of keys to values, it is the
dictionary

ExtendedRecord is what WOSRecord and its ilk inherit from and
extends Record by adding memoizing and processing of the fields.
ExtendedRecord cannot be invoked directly as it has many abstract
(virtual) methods that define how the tags are to be proccesed what they
are called, what encoding to use when writing to disk, etc.

	
metaknowledge.mkRecord._bibFormatter(s, maxLength)

	
Formats a string, list or number to make it good for a bib file by:

* if too long splits up the string correctly

* tries to use the best quoting characters

* expands lists into ‘ and ‘ seperated values, as per spec for
authors field

Note, this does not escape characters. LaTeX may have issues with the
output

Max length splitting derived from
https://www.cs.arizona.edu/~collberg/Teaching/07.231/BibTeX/bibtex.html

	
metaknowledge.recordCollection.addToNetwork(grph, nds, count, weighted, nodeType, nodeInfo, fullInfo, coreCitesDict, coreValues, detailedValues, addCR, recordToCite=True, headNd=None)

	Addeds the citations nds to grph, according to the rules give by
nodeType, fullInfo, etc.

headNd is the citation of the Record

	
metaknowledge.recordCollection.expandRecs(G, RecCollect, nodeType, weighted)

	Expand all the citations from RecCollect

	
metaknowledge.recordCollection.makeID(citation, nodeType)

	Makes the id, of the correct type for the network

	
metaknowledge.recordCollection.makeNodeTuple(citation, idVal, nodeInfo, fullInfo, nodeType, count, coreCitesDict, coreValues, detailedValues, addCR)

	Makes a tuple of idVal and a dict of the selected attributes

	
metaknowledge.genders.nameGender.nameStringGender(s, noExcept=False)

	Expects first, last

Exceptions

The exceptions defined by metaknowledge are:

	
exception metaknowledge.mkExceptions.BadCitation

	Exception thrown by Citation

	
exception metaknowledge.mkExceptions.BadGrant

	

	
exception metaknowledge.mkExceptions.BadInputFile

	

	
exception metaknowledge.mkExceptions.BadProQuestFile

	

	
exception metaknowledge.mkExceptions.BadProQuestRecord

	

	
exception metaknowledge.mkExceptions.BadPubmedFile

	

	
exception metaknowledge.mkExceptions.BadPubmedRecord

	

	
exception metaknowledge.mkExceptions.BadRecord

	

	
exception metaknowledge.mkExceptions.BadScopusFile

	

	
exception metaknowledge.mkExceptions.BadScopusRecord

	

	
exception metaknowledge.mkExceptions.BadWOSFile

	Exception thrown by wosParser for mis-formated files

	
exception metaknowledge.mkExceptions.BadWOSRecord

	Exception thrown by the record
parser
to indicate a mis-formated record. This occurs when some component of
the record does not parse. The messages will be any of:

* _Missing field on line (line Number):(line)_, which indicates a line was to short, there should have been a tag followed by information

* _End of file reached before ER_, which indicates the file ended before the 'ER' indicator appeared, 'ER' indicates the end of a record. This is often due to a copy and paste error.

* _Duplicate tags in record_, which indicates the record had 2 or more lines with the same tag.

* _Missing WOS number_, which indicates the record did not have a 'UT' tag.

Records with a BadWOSRecord error are likely incomplete or the
combination of two or more single records.

	
exception metaknowledge.mkExceptions.CollectionTypeError

	

	
exception metaknowledge.mkExceptions.GenderException

	

	
exception metaknowledge.mkExceptions.GrantCollectionException

	

	
exception metaknowledge.mkExceptions.JournalDataBaseError

	

	
exception metaknowledge.mkExceptions.RCTypeError

	

	
exception metaknowledge.mkExceptions.RCValueError

	

	
exception metaknowledge.mkExceptions.RecordsNotCompatible

	

	
exception metaknowledge.mkExceptions.TagError

	

	
exception metaknowledge.mkExceptions.UnknownFile

	

	
exception metaknowledge.mkExceptions.cacheError

	Exception raised when loading a cached RecordCollection fails, should
only be seen inside metaknowledge and always be caught.

	
exception metaknowledge.mkExceptions.mkException

	

Examples

Note: for a more recent example of using metaknowledge, please visit the NetLab blog [https://uwaterloo.ca/networks-lab/blog/post/network-analysis-metaknowledge].

metaknowledge is a python library for creating and analyzing scientific metadata. It uses records obtained from Web of Science (WOS), Scopus and other sources. It is intended to be usable by those who do not know much python. This page will be a short overview of its capabilities, to allow you to use it for your own work.

This document was made from a jupyter [https://jupyter.org] notebook, if you know how to use them, you can download the notebook here and the sample file is here if you wish to have an interactive version of this page. Now let’s begin.

	About Jupyter Notebooks

	Importing

	Reading Files

	Objects

	Record object

	RecordCollection object

	Citation object

	Filtering

	Exporting RecordCollections

	Making a network

	Making a co-citation network

	Making a citation network

	Making a co-author network

	Making a one-mode network

	Making a two-mode network

	Making a multi-mode network

	Post processing graphs

	Exporting graphs

About Jupyter Notebooks

This document was made from a jupyter [https://jupyter.org] notebook and can show and run python code. The document is broken up into what are called cells, each cell is either code, output, or markdown (text). For example this cell is markdown, which means it is plain text with a couple small formatting things, like the link in the first sentence. You can change the cell type using the dropdown menu at the top of the page.

[1]:

#This cell is python
#The cell below it is output
print("This is an output cell")

This is an output cell

The code cells contain python code that you can edit and run your self. Try changing the one above.

Importing

First you need to import the metaknowledge package

[2]:

import metaknowledge as mk

And you will often need the networkx [https://networkx.github.io/documentation/networkx-1.9.1/] package

[3]:

import networkx as nx

And matplotlib [http://matplotlib.org/] to display the graphs and to make them look nice when displayed

[4]:

import matplotlib.pyplot as plt
%matplotlib inline

metaknowledge also has a matplotlib based graph visualizer that will be used sometimes

[5]:

import metaknowledge.visual as mkv

These lines of code will be at the top of all the other lessons as they are what let us use metaknowledge.

Reading Files

First we need to import metaknowledge like we saw in lesson 1.

[1]:

import metaknowledge as mk

we only need metaknowledge for now so no need to import everything

The files from the Web of Science (WOS) can be loaded into a RecordCollections by creating a RecordCollection with the path to the files given to it as a string.

[2]:

RC = mk.RecordCollection("savedrecs.txt")
repr(RC)

[2]:

'savedrecs'

You can also read a whole directory, in this case it is reading the current working directory

[3]:

RC = mk.RecordCollection(".")
repr(RC)

[3]:

'files-from-.'

metaknowledge can detect if a file is a valid WOS file or not and will read the entire directory and load only those that have the right header. You can also tell it to only read a certain type of file, by using the extension argument.

[4]:

RC = mk.RecordCollection(".", extension = "txt")
repr(RC)

[4]:

'txt-files-from-.'

Now you have a RecordCollection composed of all the WOS records in the selected file(s).

[5]:

print("RC is a " + str(RC))

RC is a Collection of 32 records

You might have noticed I used two different ways to display the RecordCollection. repr(RC) will give you where metaknowledge thinks the collection came from. While str(RC) will give you a nice string containing the number of Records.

Objects

In Python everything is an object thus everything metaknowledge produces is an object. There are three objects that have been created specifically for it, objects created this way are call classes. The three are Record a single WOS record, RecordCollection a group of Records and Citation a single WOS citation.

Lets import metaknowledge and read a file

[1]:

import metaknowledge as mk
RC = mk.RecordCollection('../savedrecs.txt') # '..' is one directory above the current one

Now we can look at how the different objects relate to this file.

Record object

Record is an object that contains a simple WOS record, for example a journal article, book, or conference proceedings. They are what RecordCollections contain. To see an individual Record at random from a RecordCollection you can use peak()

[2]:

R = RC.peak()

A single Record can give you all the information it contains about its record. If for example you want its authors.

[3]:

print(R.authorsFull)
print(R.AF)

['BREVIK, I']
['BREVIK, I']

Converting a Record to a string will give its title

[4]:

print(R)

EXPERIMENTS IN PHENOMENOLOGICAL ELECTRODYNAMICS AND THE ELECTROMAGNETIC ENERGY-MOMENTUM TENSOR

If you try to access a tag the Record does not have it will return None

[5]:

print(R.GP)

None

There are two ways of getting each tag, one is using the WOS 2 letter abbreviation and the second is to use the human readable name. There is no standard for the human readable names, so they are specific to metaknowledge. To see how the WOS names map to the long names look at tagFuncs. If you want all the tags a Record has use iter.

[6]:

print(R.__iter__())

['PT', 'AU', 'AF', 'TI', 'SO', 'LA', 'DT', 'C1', 'CR', 'NR', 'TC', 'Z9', 'PU', 'PI', 'PA', 'SN', 'J9', 'JI', 'PY', 'VL', 'IS', 'BP', 'EP', 'DI', 'PG', 'WC', 'SC', 'GA', 'UT']

RecordCollection object

RecordCollection is the object that metaknowledge uses the most. It is your interface with the data you want.

To iterate over all of the Records you can use a for loop

[7]:

for R in RC:
 print(R)

EXPERIMENTS IN PHENOMENOLOGICAL ELECTRODYNAMICS AND THE ELECTROMAGNETIC ENERGY-MOMENTUM TENSOR
OBSERVATION OF SHIFTS IN TOTAL REFLECTION OF A LIGHT-BEAM BY A MULTILAYERED STRUCTURE
ANGULAR SPECTRUM AS AN ELECTRICAL NETWORK
SHIFTS OF COHERENT-LIGHT BEAMS ON REFLECTION AT PLANE INTERFACES BETWEEN ISOTROPIC MEDIA
DISCUSSIONS OF PROBLEM OF PONDEROMOTIVE FORCES
A Novel Method for Enhancing Goos-Hanchen Shift in Total Internal Reflection
Optical properties of nanostructured thin films
Simple technique for measuring the Goos-Hanchen effect with polarization modulation and a position-sensitive detector
CONSERVATION OF ANGULAR MOMENT WITH SIX COMPONENTS AND ASYMMETRICAL IMPULSE ENERGY TENSORS
INTERFERENCE THEORY OF REFLECTION FROM MULTILAYERED MEDIA
Longitudinal and transverse effects of nonspecular reflection
TRANSVERSE DISPLACEMENT OF A TOTALLY REFLECTED LIGHT-BEAM AND PHASE-SHIFT METHOD
MECHANICAL INTERPRETATION OF SHIFTS IN TOTAL REFLECTION OF SPINNING PARTICLES
WHY ENERGY FLUX AND ABRAHAMS PHOTON MOMENTUM ARE MACROSCOPICALLY SUBSTITUTED FOR MOMENTUM DENSITY AND MINKOWSKIS PHOTON MOMENTUM
SPIN ANGULAR-MOMENTUM OF A FIELD INTERACTING WITH A PLANE INTERFACE
Numerical study of the displacement of a three-dimensional Gaussian beam transmitted at total internal reflection. Near-field applications
LONGITUDINAL AND TRANSVERSE DISPLACEMENTS OF A BOUNDED MICROWAVE BEAM AT TOTAL INTERNAL-REFLECTION
EXCHANGED MOMENTUM BETWEEN MOVING ATOMS AND A SURFACE-WAVE - THEORY AND EXPERIMENT
ASYMMETRICAL MOMENTUM-ENERGY TENSORS AND 6-COMPONENT ANGULAR-MOMENTUM IN PROBLEM CONCERNING 2 PHOTON MOMENTA AND MAGNETODYNAMIC EFFECT PROBLEM
Experimental observation of the Imbert-Fedorov transverse displacement after a single total reflection
RESONANCE EFFECTS ON TOTAL INTERNAL-REFLECTION AND LATERAL (GOOS-HANCHEN) BEAM DISPLACEMENT AT THE INTERFACE BETWEEN NONLOCAL AND LOCAL DIELECTRIC
Goos-Hanchen shift as a probe in evanescent slab waveguide sensors
THEORETICAL NOTES ON AMPLIFICATION OF TRANSVERSE SHIFT BY TOTAL REFLECTION ON MULTILAYERED SYSTEM
INTERNAL PHOTON IMPULSE OF DIELECTRIC AND ON COUPLE APPLIED TO ANISOTROPIC CRYSTAL
SPIN ANGULAR-MOMENTUM OF A FIELD INTERACTING WITH A PLANE INTERFACE
CALCULATION AND MEASUREMENT OF FORCES AND TORQUES APPLIED TO UNIAXIAL CRYSTAL BY EXTRAORDINARY WAVE
Goos-Hanchen and Imbert-Fedorov shifts for leaky guided modes
PREDICTION OF A RESONANCE-ENHANCED LASER-BEAM DISPLACEMENT AT TOTAL INTERNAL-REFLECTION IN SEMICONDUCTORS
GENERAL STUDY OF DISPLACEMENTS AT TOTAL REFLECTION
NONLINEAR TOTALLY REFLECTING PRISM COUPLER - THERMOMECHANIC EFFECTS AND INTENSITY-DEPENDENT REFRACTIVE-INDEX OF THIN-FILMS
DISPLACEMENT OF A TOTALLY REFLECTED LIGHT-BEAM - FILTERING OF POLARIZATION STATES AND AMPLIFICATION
Transverse displacement at total reflection near the grazing angle: a way to discriminate between theories

The individual Records are index by their WOS numbers so you can access a specific one in the collection if you know its number.

[8]:

RC.getWOS("WOS:A1979GV55600001")

[8]:

<metaknowledge.record.Record at 0x7f07784be860>

Citation object

Citation is an object to contain the results of parsing a citation. They can be created from a Record

[9]:

Cite = R.createCitation()
print(Cite)

Pillon F, 2005, APPL PHYS B-LASERS O, V80, P355, DOI 10.1007/s00340-005-1728-2

Citations allow for the raw strings of citations to be manipulated easily by metaknowledge.

Filtering

The for loop shown above is the main way to filter a RecordCollection, that said there are a few builtin filters, e.g. yearSplit(), but the for loop is an easily generalized way of filtering that is relatively simple to read so it the main way you should filter. An example of the workflow is as follows:

First create a new RecordCollection

[10]:

RCfiltered = mk.RecordCollection()

Then add the records that meet your condition, in this case that their title’s start with 'A'

[11]:

for R in RC:
 if R.title[0] == 'A':
 RCfiltered.addRec(R)

[12]:

print(RCfiltered)

Collection of 3 records

Now you have a RecordCollection RCfiltered of all the Records whose titles begin with 'A'.

One note about implementing this, the above code does not handle the case in which the title is missing i.e. R.title is None. You will have to deal with this on your own.

Two builtin functions to filter collections are yearSplit() and localCitesOf(). To get a RecordCollection of all Records between 1970 and 1979:

[13]:

RC70 = RC.yearSplit(1970, 1979)
print(RC70)

Collection of 19 records

The second function localCitesOf() takes in an object that a Citation can be created from and returns a RecordCollection of all the Records that cite it. So to see all the records that cite "Yariv A., 1971, INTRO OPTICAL ELECTR".

[14]:

RCintroOpt = RC.localCitesOf("Yariv A., 1971, INTRO OPTICAL ELECTR")
print(RCintroOpt)

Collection of 1 records

Exporting RecordCollections

Now you have a filtered RecordCollection you can write it as a file with writeFile()

[15]:

 RCfiltered.writeFile("Records_Starting_with_A.txt")

The written file is identical to one of those produced by WOS.

If you wish to have a more useful file use writeCSV() which creates a CSV file of all the tags as columns and the Records as rows. IF you only care about a few tags the onlyTheseTags argument allows you to control the tags.

[16]:

selectedTags = ['TI', 'UT', 'CR', 'AF']

This will give only the title, WOS number, citations, and authors.

[17]:

RCfiltered.writeCSV("Records_Starting_with_A.csv", onlyTheseTags = selectedTags)

The last export feature is for using metaknowledge with other packages, in particular pandas [http://pandas.pydata.org/], which you will learn about later, but others should also work. makeDict() creates a dictionary with tags as keys and lists as values with each index of the lists corresponding to a Record. pandas can accept these directly to make DataFrames.

[18]:

import pandas
recDataFrame = pandas.DataFrame(RC.makeDict())

Making a network

For this class most of the types of network you will want to make can be produced by metaknowledge. The first three co-citation network, citation network and co-author network are specialized versions of the last three one-mode network, two-mode network and multi-mode network.

First we need to import metaknowledge and because we will be dealing with graphs the graphs package networkx as should be imported

[1]:

import metaknowledge as mk
import networkx as nx

And so we can visualize the graphs

[2]:

import matplotlib.pyplot as plt
%matplotlib inline
import metaknowledge.contour.plotting as mkv

Before we start we should also get a RecordCollection to work with.

[3]:

RC = mk.RecordCollection('../savedrecs.txt')

Now lets look at the different types of graph.

Making a co-citation network

To make a basic co-citation network of Records use networkCoCitation().

[4]:

CoCitation = RC.networkCoCitation()
print(mk.graphStats(CoCitation, makeString = True)) #makestring by default is True so it is not strictly necessary to include

The graph has 601 nodes, 19492 edges, 0 isolates, 4 self loops, a density of 0.108109 and a transitivity of 0.691662

graphStats() is a function to extract some of the statists of a graph and make them into a nice string.

CoCitation is now a networkx [https://networkx.github.io/documentation/networkx-1.9.1/] graph of the co-citation network, with the hashes of the Citations as nodes and the full citations stored as an attributes. Lets look at one node

[5]:

CoCitation.nodes(data = True)[0]

[5]:

(5308678917494226943,
 {'count': 1, 'info': 'CAVALLERI G, 1974, LETT NUOVO CIMENTO, V12, P626'})

and an edge

[6]:

CoCitation.edges(data = True)[0]

[6]:

(5308678917494226943, 7204849785423671553, {'weight': 1})

All the graphs metaknowledge use are networkx graphs, a few functions to trim them are implemented in metaknowledge, here is the example section, but many useful functions are implemented by it. Read the documentation here [https://networkx.github.io/documentation/networkx-1.9.1/] for more information.

The networkCoCitation() function has many options for filtering and determining the nodes. The default is to use the Citations themselves. If you wanted to make a network of co-citations of journals you would have to make the node type 'journal' and remove the non-journals.

[7]:

coCiteJournals = RC.networkCoCitation(nodeType = 'journal', dropNonJournals = True)
print(mk.graphStats(coCiteJournals))

The graph has 89 nodes, 1383 edges, 0 isolates, 40 self loops, a density of 0.353166 and a transitivity of 0.640306

Lets take a look at the graph after a quick spring layout

[8]:

nx.draw_spring(coCiteJournals)

[image: ../_images/examples_Making-Networks_17_0.png]

A bit basic but gives a general idea. If you want to make a much better looking and more informative visualization you could try gephi [https://gephi.github.io/] or visone [http://visone.info/]. Exporting to them is covered below in Exporting graphs.

Making a citation network

The networkCitation() method is nearly identical to networkCoCitation() in its parameters. It has one additional keyword argument directed that controls if it produces a directed network. Read Making a co-citation network to learn more about networkCitation().

One small example is still worth providing. If you want to make a network of the citations of years by other years and have the letter 'A' in them then you would write:

[9]:

citationsA = RC.networkCitation(nodeType = 'year', keyWords = ['A'])
print(mk.graphStats(citationsA))

The graph has 18 nodes, 24 edges, 0 isolates, 1 self loops, a density of 0.0784314 and a transitivity of 0.0344828

[10]:

nx.draw_spring(citationsA, with_labels = True)

[image: ../_images/examples_Making-Networks_23_0.png]

Making a co-author network

The networkCoAuthor() function produces the co-authorship network of the RecordCollection as is used as shown

[11]:

coAuths = RC.networkCoAuthor()
print(mk.graphStats(coAuths))

The graph has 45 nodes, 46 edges, 9 isolates, 0 self loops, a density of 0.0464646 and a transitivity of 0.822581

Making a one-mode network

In addition to the specialized network generators metaknowledge lets you make a one-mode co-occurence network of any of the WOS tags, with the oneModeNetwork() [http://networkslab.org/metaknowledge/docs/RecordCollection#oneModeNetwork] function. For examples the WOS subject tag 'WC' can be examined.

[12]:

wcCoOccurs = RC.oneModeNetwork('WC')
print(mk.graphStats(wcCoOccurs))

The graph has 9 nodes, 3 edges, 3 isolates, 0 self loops, a density of 0.0833333 and a transitivity of 0

[13]:

nx.draw_spring(wcCoOccurs, with_labels = True)

[image: ../_images/examples_Making-Networks_31_0.png]

Making a two-mode network

If you wish to study the relationships between 2 tags you can use the twoModeNetwork() [http://networkslab.org/metaknowledge/docs/RecordCollection#twoModeNetwork] function which creates a two mode network showing the connections between the tags. For example to look at the connections between titles('TI') and subjects ('WC')

[14]:

ti_wc = RC.twoModeNetwork('WC', 'title')
print(mk.graphStats(ti_wc))

The graph has 40 nodes, 35 edges, 0 isolates, 0 self loops, a density of 0.0448718 and a transitivity of 0

The network is directed by default with the first tag going to the second.

[15]:

mkv.quickVisual(ti_wc, showLabel = False) #default is False as there are usually lots of labels

[image: ../_images/examples_Making-Networks_36_0.png]

quickVisual() makes a graph with the different types of nodes coloured differently and a couple other small visual tweaks from networkx’s draw_spring.

Making a multi-mode network

For any number of tags the nModeNetwork() [http://networkslab.org/metaknowledge/docs/RecordCollection#nModeNetwork] function will do the same thing as the oneModeNetwork() but with any number of tags and it will keep track of their types. So to look at the co-occurence of titles 'TI', WOS number 'UT' and authors 'AU'.

[16]:

tags = ['TI', 'UT', 'AU']
multiModeNet = RC.nModeNetwork(tags)
mk.graphStats(multiModeNet)

[16]:

'The graph has 108 nodes, 163 edges, 0 isolates, 0 self loops, a density of 0.0282105 and a transitivity of 0.443946'

[17]:

mkv.quickVisual(multiModeNet)

[image: ../_images/examples_Making-Networks_42_0.png]

Beware this can very easily produce hairballs

[18]:

tags = mk.tagsAndNames #All the tags, twice
sillyMultiModeNet = RC.nModeNetwork(tags)
mk.graphStats(sillyMultiModeNet)

[18]:

'The graph has 1184 nodes, 59573 edges, 0 isolates, 1184 self loops, a density of 0.0850635 and a transitivity of 0.492152'

[19]:

mkv.quickVisual(sillyMultiModeNet)

[image: ../_images/examples_Making-Networks_45_0.png]

Post processing graphs

If you wish to apply a well known algorithm or process to a graph networkx [https://networkx.github.io/documentation/networkx-1.9.1/] is a good place to look as they do a good job at implementing them.

One of the features it lacks though is pruning of graphs, metaknowledge has these capabilities. To remove edges outside of some weight range, use dropEdges(). For example if you wish to remove the self loops, edges with weight less than 2 and weight higher than 10 from coCiteJournals.

[20]:

minWeight = 3
maxWeight = 10
proccessedCoCiteJournals = mk.dropEedges(coCiteJournals, minWeight, maxWeight, dropSelfLoops = True)
mk.graphStats(proccessedCoCiteJournals)

[20]:

'The graph has 89 nodes, 466 edges, 1 isolates, 0 self loops, a density of 0.118999 and a transitivity of 0.213403'

Then to remove all the isolates, i.e. nodes with degree less than 1, use dropNodesByDegree()

[21]:

proccessedCoCiteJournals = mk.dropNodesByDegree(proccessedCoCiteJournals, 1)
mk.graphStats(proccessedCoCiteJournals)

[21]:

'The graph has 88 nodes, 466 edges, 0 isolates, 0 self loops, a density of 0.121735 and a transitivity of 0.213403'

Now before the processing the graph can be seen here. After the processing it looks like

[22]:

nx.draw_spring(proccessedCoCiteJournals)

[image: ../_images/examples_Making-Networks_52_0.png]

Hm, it looks a bit thinner. Using a visualizer will make the difference a bit more noticeable.

Exporting graphs

Now you have a graph the last step is to write it to disk. networkx has a few ways of doing this, but they tend to be slow. metaknowledge can write an edge list and node attribute file that contain all the information of the graph. The function to do this is called writeGraph(). You give it the start of the file name and it makes two labeled files containing the graph.

[23]:

mk.writeGraph(proccessedCoCiteJournals, "FinalJournalCoCites")

These files are simple CSVs an can be read easily by most systems. If you want to read them back into Python the readGraph() function will do that.

[24]:

 FinalJournalCoCites = mk.readGraph("FinalJournalCoCites_edgeList.csv", "FinalJournalCoCites_nodeAttributes.csv")
mk.graphStats(FinalJournalCoCites)

[24]:

'The graph has 88 nodes, 466 edges, 0 isolates, 0 self loops, a density of 0.121735 and a transitivity of 0.213403'

This is full example workflow for metaknowledge, the package is flexible and you hopefully will be able to customize it to do what you want (I assume you do not want the Records staring with ‘A’).

Command Line Tool

metaknowledge comes with a command-line application named metaknowledge. This provides a simple interface to the python package and allows the generation of most of the networks along with ways to manage the records themselves.

Overview

To start the tool run:

$ metaknowledge

You will be asked for the location of the file or files to use. These can be given by paths to the files or paths to directories with the files. Note: if a directory is used all files with the proper header will be read.

You will then be asked what to do with the records:

A collection of 537 WOS records has been created
What do you wish to do with it:
1) Make a graph
2) Write the collection as a single WOS style file
3) Write the collection as a single WOS style file and make a graph
4) Write the collection as a single csv file
5) Write the collection as a single csv file and make a graph
6) Write all the citations to a single file
7) Go over non-journal citations
i) open python console
q) quit
What is your selection:

Select the option you want by typing the corresponding number or character and pressing enter. The menus after this step are controlled this way as well.

The second last option i) will start an interactive python session will all the objects you have created thus far accessible, their names will be given when it starts.

The last option q) will cause the program to exit. You can also quit at any time by pressing ctr-c.

Questions?

If you find bugs, or have questions, please write to:

Reid McIlroy-Young reid@reidmcy.com

John McLevey john.mclevey@uwaterloo.ca

License

metaknowledge is free and open source software, distributed under the GPL License.

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 metaknowledge	

 	
 	
 metaknowledge.citation	

 	
 	
 metaknowledge.constants	

 	
 	
 metaknowledge.contour	

 	
 	
 metaknowledge.contour.plotting	

 	
 	
 metaknowledge.diffusion	

 	
 	
 metaknowledge.fileHandlers	

 	
 	
 metaknowledge.genders	

 	
 	
 metaknowledge.genders.nameGender	

 	
 	
 metaknowledge.grantCollection	

 	
 	
 metaknowledge.grants	

 	
 	
 metaknowledge.grants.baseGrant	

 	
 	
 metaknowledge.grants.cihrGrant	

 	
 	
 metaknowledge.grants.medlineGrant	

 	
 	
 metaknowledge.grants.nsercGrant	

 	
 	
 metaknowledge.grants.nsfGrant	

 	
 	
 metaknowledge.grants.scopusGrant	

 	
 	
 metaknowledge.graphHelpers	

 	
 	
 metaknowledge.journalAbbreviations	

 	
 	
 metaknowledge.journalAbbreviations.backend	

 	
 	
 metaknowledge.medline	

 	
 	
 metaknowledge.medline.medlineHandlers	

 	
 	
 metaknowledge.medline.recordMedline	

 	
 	
 metaknowledge.medline.tagProcessing.specialFunctions	

 	
 	
 metaknowledge.medline.tagProcessing.tagFunctions	

 	
 	
 metaknowledge.mkCollection	

 	
 	
 metaknowledge.mkExceptions	

 	
 	
 metaknowledge.mkRecord	

 	
 	
 metaknowledge.progressBar	

 	
 	
 metaknowledge.proquest	

 	
 	
 metaknowledge.proquest.proQuestHandlers	

 	
 	
 metaknowledge.proquest.recordProQuest	

 	
 	
 metaknowledge.proquest.tagProcessing.specialFunctions	

 	
 	
 metaknowledge.proquest.tagProcessing.tagFunctions	

 	
 	
 metaknowledge.RCglimpse	

 	
 	
 metaknowledge.recordCollection	

 	
 	
 metaknowledge.scopus	

 	
 	
 metaknowledge.scopus.recordScopus	

 	
 	
 metaknowledge.scopus.scopusHandlers	

 	
 	
 metaknowledge.scopus.tagProcessing.specialFunctions	

 	
 	
 metaknowledge.scopus.tagProcessing.tagFunctions	

 	
 	
 metaknowledge.WOS	

 	
 	
 metaknowledge.WOS.recordWOS	

 	
 	
 metaknowledge.WOS.tagProcessing.funcDicts	

 	
 	
 metaknowledge.WOS.tagProcessing.helpFuncs	

 	
 	
 metaknowledge.WOS.tagProcessing.tagFunctions	

 	
 	
 metaknowledge.WOS.wosHandlers	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Y

_

 	
 	__bytes__() (metaknowledge.Record method)

 	__contains__() (metaknowledge.ExtendedRecord method)

 	(metaknowledge.Record method)

 	__eq__() (metaknowledge.citation.Citation method)

 	(metaknowledge.Collection method)

 	(metaknowledge.Record method)

 	__ge__() (metaknowledge.Collection method)

 	__getitem__() (metaknowledge.ExtendedRecord method)

 	(metaknowledge.Record method)

 	__hash__() (metaknowledge.citation.Citation method)

 	(metaknowledge.Collection method)

 	(metaknowledge.Record method)

 	__init__() (metaknowledge.citation.Citation method)

 	(metaknowledge.Collection method)

 	(metaknowledge.CollectionWithIDs method)

 	(metaknowledge.ExtendedRecord method)

 	(metaknowledge.GrantCollection method)

 	(metaknowledge.MedlineGrant method)

 	(metaknowledge.Record method)

 	(metaknowledge.RecordCollection method)

 	(metaknowledge.WOS.WOSRecord method)

 	(metaknowledge.grants.FallbackGrant method)

 	(metaknowledge.grants.Grant method)

 	(metaknowledge.grants.NSERCGrant method)

 	(metaknowledge.grants.NSFGrant method)

 	(metaknowledge.medline.MedlineRecord method)

 	(metaknowledge.proquest.ProQuestRecord method)

 	(metaknowledge.scopus.ScopusRecord method)

 	
 	__iter__() (metaknowledge.Record method)

 	__le__() (metaknowledge.Collection method)

 	__len__() (metaknowledge.Record method)

 	__repr__() (metaknowledge.citation.Citation method)

 	(metaknowledge.Collection method)

 	(metaknowledge.Record method)

 	__str__() (metaknowledge.citation.Citation method)

 	(metaknowledge.Collection method)

 	(metaknowledge.Record method)

 	__weakref__ (metaknowledge.citation.Citation attribute)

 	(metaknowledge.Collection attribute)

 	(metaknowledge.Record attribute)

 	_bibFormatter() (in module metaknowledge.mkRecord)

A

 	
 	AB() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	abstract() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	AD() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	add() (metaknowledge.Collection method)

 	address() (in module metaknowledge.medline.tagProcessing.specialFunctions)

 	addToDB() (in module metaknowledge.journalAbbreviations.backend)

 	(metaknowledge.citation.Citation method)

 	addToNetwork() (in module metaknowledge.recordCollection)

 	AID() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	allButDOI() (metaknowledge.citation.Citation method)

 	articleNumber() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	AU() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	AUID() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	
 	authAddress() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	authGenders() (metaknowledge.ExtendedRecord method)

 	(metaknowledge.WOS.recordWOS.WOSRecord method)

 	(metaknowledge.medline.recordMedline.MedlineRecord method)

 	(metaknowledge.proquest.recordProQuest.ProQuestRecord method)

 	(metaknowledge.scopus.recordScopus.ScopusRecord method)

 	authKeywords() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	authors (metaknowledge.medline.recordMedline.MedlineRecord attribute)

 	(metaknowledge.WOS.recordWOS.WOSRecord attribute)

 	(metaknowledge.proquest.recordProQuest.ProQuestRecord attribute)

 	(metaknowledge.scopus.recordScopus.ScopusRecord attribute)

 	authorsFull() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	authorsShort() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

B

 	
 	BadCitation

 	badEntries() (metaknowledge.CollectionWithIDs method)

 	BadGrant

 	BadInputFile

 	BadProQuestFile

 	BadProQuestRecord

 	BadPubmedFile

 	BadPubmedRecord

 	BadRecord

 	BadScopusFile

 	BadScopusRecord

 	BadWOSFile

 	
 	BadWOSRecord

 	beginningPage() (in module metaknowledge.medline.tagProcessing.specialFunctions)

 	(in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	bibString() (metaknowledge.ExtendedRecord method)

 	(metaknowledge.WOS.recordWOS.WOSRecord method)

 	(metaknowledge.medline.recordMedline.MedlineRecord method)

 	(metaknowledge.proquest.recordProQuest.ProQuestRecord method)

 	(metaknowledge.scopus.recordScopus.ScopusRecord method)

 	bookAuthor() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	bookAuthorFull() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	bookDOI() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	BTI() (in module metaknowledge.medline.tagProcessing.tagFunctions)

C

 	
 	cacheError

 	chunk() (metaknowledge.Collection method)

 	CI() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	CIHRGrant (class in metaknowledge.grants.cihrGrant)

 	CIN() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	Citation (class in metaknowledge.citation)

 	citations() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	citedRefsCount() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	citeFilter() (metaknowledge.RecordCollection method)

 	citeValue() (in module metaknowledge.scopus.tagProcessing.tagFunctions)

 	clear() (metaknowledge.Collection method)

 	CN() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	Collection (class in metaknowledge)

 	CollectionTypeError

 	CollectionWithIDs (class in metaknowledge)

 	commaSpaceSeperated() (in module metaknowledge.scopus.tagProcessing.tagFunctions)

 	confDate() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	confHost() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	confLocation() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	
 	confSponsors() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	confTitle() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	containsID() (metaknowledge.CollectionWithIDs method)

 	cooccurrenceCounts() (metaknowledge.CollectionWithIDs method)

 	copy() (metaknowledge.Collection method)

 	(metaknowledge.Record method)

 	(metaknowledge.WOS.recordWOS.WOSRecord method)

 	(metaknowledge.medline.recordMedline.MedlineRecord method)

 	(metaknowledge.proquest.recordProQuest.ProQuestRecord method)

 	(metaknowledge.scopus.recordScopus.ScopusRecord method)

 	CRDT() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	createCitation() (metaknowledge.ExtendedRecord method)

 	(metaknowledge.WOS.recordWOS.WOSRecord method)

 	(metaknowledge.medline.recordMedline.MedlineRecord method)

 	(metaknowledge.proquest.recordProQuest.ProQuestRecord method)

 	(metaknowledge.scopus.ScopusRecord method)

 	(metaknowledge.scopus.recordScopus.ScopusRecord method)

 	CRF() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	CRI() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	CTI() (in module metaknowledge.medline.tagProcessing.tagFunctions)

D

 	
 	DA() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	DCOM() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	DDIN() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	DEP() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	diffusionAddCountsFromSource() (in module metaknowledge.diffusion)

 	diffusionCount() (in module metaknowledge.diffusion)

 	diffusionGraph() (in module metaknowledge.diffusion)

 	discard() (metaknowledge.Collection method)

 	discardID() (metaknowledge.CollectionWithIDs method)

 	docType() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	
 	documentDeliveryNumber() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	DOI() (in module metaknowledge.medline.tagProcessing.specialFunctions)

 	(in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	DP() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	DRIN() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	dropBadEntries() (metaknowledge.CollectionWithIDs method)

 	dropEdges() (in module metaknowledge.graphHelpers)

 	dropNodesByCount() (in module metaknowledge.graphHelpers)

 	dropNodesByDegree() (in module metaknowledge.graphHelpers)

 	dropNonJournals() (metaknowledge.RecordCollection method)

E

 	
 	EDAT() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	editedBy() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	editors() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	EFR() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	EIN() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	eISSN() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	email() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	EN() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	encoding() (metaknowledge.ExtendedRecord method)

 	(metaknowledge.WOS.WOSRecord method)

 	(metaknowledge.WOS.recordWOS.WOSRecord method)

 	(metaknowledge.medline.MedlineRecord method)

 	(metaknowledge.medline.recordMedline.MedlineRecord method)

 	(metaknowledge.proquest.ProQuestRecord method)

 	(metaknowledge.proquest.recordProQuest.ProQuestRecord method)

 	(metaknowledge.scopus.ScopusRecord method)

 	(metaknowledge.scopus.recordScopus.ScopusRecord method)

 	
 	endingPage() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	excludeFromDB() (in module metaknowledge.journalAbbreviations.backend)

 	expandRecs() (in module metaknowledge.recordCollection)

 	ExtendedRecord (class in metaknowledge)

 	Extra() (metaknowledge.citation.Citation method)

F

 	
 	FallbackGrant (class in metaknowledge.grants)

 	FAU() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	FED() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	filterNonJournals() (in module metaknowledge.citation)

 	findProbableCopyright() (metaknowledge.RecordCollection method)

 	FIR() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	
 	forBurst() (metaknowledge.RecordCollection method)

 	forNLP() (metaknowledge.RecordCollection method)

 	FPS() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	FullJournalName() (metaknowledge.citation.Citation method)

 	funding() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	fundingText() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

G

 	
 	GenderException

 	genderStats() (metaknowledge.RecordCollection method)

 	get() (metaknowledge.ExtendedRecord method)

 	(metaknowledge.WOS.recordWOS.WOSRecord method)

 	(metaknowledge.medline.recordMedline.MedlineRecord method)

 	(metaknowledge.proquest.recordProQuest.ProQuestRecord method)

 	(metaknowledge.scopus.recordScopus.ScopusRecord method)

 	getAltName() (metaknowledge.ExtendedRecord static method)

 	(metaknowledge.WOS.WOSRecord static method)

 	(metaknowledge.WOS.recordWOS.WOSRecord static method)

 	(metaknowledge.medline.MedlineRecord static method)

 	(metaknowledge.medline.recordMedline.MedlineRecord static method)

 	(metaknowledge.proquest.ProQuestRecord static method)

 	(metaknowledge.proquest.recordProQuest.ProQuestRecord static method)

 	(metaknowledge.scopus.ScopusRecord static method)

 	(metaknowledge.scopus.recordScopus.ScopusRecord static method)

 	getCitations() (metaknowledge.ExtendedRecord method)

 	(metaknowledge.RecordCollection method)

 	(metaknowledge.WOS.recordWOS.WOSRecord method)

 	(metaknowledge.medline.recordMedline.MedlineRecord method)

 	(metaknowledge.proquest.recordProQuest.ProQuestRecord method)

 	(metaknowledge.scopus.recordScopus.ScopusRecord method)

 	
 	getID() (metaknowledge.CollectionWithIDs method)

 	getInstitutions() (metaknowledge.grants.Grant method)

 	(metaknowledge.grants.NSERCGrant method)

 	(metaknowledge.grants.NSFGrant method)

 	getInvestigators() (metaknowledge.grants.Grant method)

 	(metaknowledge.grants.NSERCGrant method)

 	(metaknowledge.grants.NSFGrant method)

 	getj9dict() (in module metaknowledge.journalAbbreviations.backend)

 	getMonth() (in module metaknowledge.WOS.tagProcessing.helpFuncs)

 	getNodeDegrees() (in module metaknowledge.graphHelpers)

 	getWeight() (in module metaknowledge.graphHelpers)

 	glimpse() (metaknowledge.CollectionWithIDs method)

 	GN() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	GR() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	Grant (class in metaknowledge.grants)

 	GrantCollection (class in metaknowledge)

 	GrantCollectionException

 	grantValue() (in module metaknowledge.scopus.tagProcessing.tagFunctions)

 	graphDensityContourPlot() (in module metaknowledge.contour.plotting)

 	graphStats() (in module metaknowledge.graphHelpers)

 	group() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	groupName() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	GS() (in module metaknowledge.medline.tagProcessing.tagFunctions)

I

 	
 	id (metaknowledge.medline.recordMedline.MedlineRecord attribute)

 	(metaknowledge.WOS.recordWOS.WOSRecord attribute)

 	(metaknowledge.proquest.recordProQuest.ProQuestRecord attribute)

 	(metaknowledge.scopus.recordScopus.ScopusRecord attribute)

 	ID() (metaknowledge.citation.Citation method)

 	integralValue() (in module metaknowledge.scopus.tagProcessing.tagFunctions)

 	IP() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	IR() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	IRAD() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	IS() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	isAnonymous() (metaknowledge.citation.Citation method)

 	ISBN() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	(in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	isCIHRfile() (in module metaknowledge.grants.cihrGrant)

 	
 	isInteractive() (in module metaknowledge.constants)

 	isJournal() (metaknowledge.citation.Citation method)

 	isMedlineFile() (in module metaknowledge.medline.medlineHandlers)

 	isoAbbreviation() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	isProQuestFile() (in module metaknowledge.proquest.proQuestHandlers)

 	isScopusFile() (in module metaknowledge.scopus.scopusHandlers)

 	ISSN() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	issue() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	isTagOrName() (in module metaknowledge.WOS.tagProcessing.funcDicts)

 	isWOSFile() (in module metaknowledge.WOS.wosHandlers)

 	items() (metaknowledge.ExtendedRecord method)

 	(metaknowledge.WOS.recordWOS.WOSRecord method)

 	(metaknowledge.medline.recordMedline.MedlineRecord method)

 	(metaknowledge.proquest.recordProQuest.ProQuestRecord method)

 	(metaknowledge.scopus.recordScopus.ScopusRecord method)

J

 	
 	j9() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	j9urlGenerator() (in module metaknowledge.journalAbbreviations.backend)

 	JID() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	
 	journal() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	JournalDataBaseError

 	JT() (in module metaknowledge.medline.tagProcessing.tagFunctions)

K

 	
 	keys() (metaknowledge.medline.recordMedline.MedlineRecord method)

 	(metaknowledge.WOS.recordWOS.WOSRecord method)

 	(metaknowledge.proquest.recordProQuest.ProQuestRecord method)

 	(metaknowledge.scopus.recordScopus.ScopusRecord method)

 	
 	keywords() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

L

 	
 	LA() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	language() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	LID() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	
 	localCitesOf() (metaknowledge.RecordCollection method)

 	localCiteStats() (metaknowledge.RecordCollection method)

 	LR() (in module metaknowledge.medline.tagProcessing.tagFunctions)

M

 	
 	makeBiDirectional() (in module metaknowledge.WOS.tagProcessing.helpFuncs)

 	makeDict() (metaknowledge.RecordCollection method)

 	makeID() (in module metaknowledge.recordCollection)

 	makeNodeID() (in module metaknowledge.diffusion)

 	makeNodeTuple() (in module metaknowledge.recordCollection)

 	MedlineGrant (class in metaknowledge)

 	medlineParser() (in module metaknowledge.medline.medlineHandlers)

 	MedlineRecord (class in metaknowledge.medline)

 	(class in metaknowledge.medline.recordMedline)

 	medlineRecordParser() (in module metaknowledge.medline.recordMedline)

 	meetingAbstract() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	mergeGraphs() (in module metaknowledge.graphHelpers)

 	metaknowledge.citation (module)

 	metaknowledge.constants (module)

 	metaknowledge.contour (module)

 	metaknowledge.contour.plotting (module)

 	metaknowledge.diffusion (module)

 	metaknowledge.fileHandlers (module)

 	metaknowledge.genders (module)

 	metaknowledge.genders.nameGender (module)

 	metaknowledge.grantCollection (module)

 	metaknowledge.grants (module), [1]

 	metaknowledge.grants.baseGrant (module)

 	metaknowledge.grants.cihrGrant (module), [1]

 	metaknowledge.grants.medlineGrant (module)

 	metaknowledge.grants.nsercGrant (module)

 	metaknowledge.grants.nsfGrant (module)

 	metaknowledge.grants.scopusGrant (module)

 	metaknowledge.graphHelpers (module)

 	metaknowledge.journalAbbreviations (module)

 	metaknowledge.journalAbbreviations.backend (module)

 	metaknowledge.medline (module)

 	
 	metaknowledge.medline.medlineHandlers (module)

 	metaknowledge.medline.recordMedline (module)

 	metaknowledge.medline.tagProcessing.specialFunctions (module)

 	metaknowledge.medline.tagProcessing.tagFunctions (module)

 	metaknowledge.mkCollection (module)

 	metaknowledge.mkExceptions (module)

 	metaknowledge.mkRecord (module)

 	metaknowledge.progressBar (module)

 	metaknowledge.proquest (module)

 	metaknowledge.proquest.proQuestHandlers (module)

 	metaknowledge.proquest.recordProQuest (module)

 	metaknowledge.proquest.tagProcessing.specialFunctions (module)

 	metaknowledge.proquest.tagProcessing.tagFunctions (module)

 	metaknowledge.RCglimpse (module)

 	metaknowledge.recordCollection (module)

 	metaknowledge.scopus (module)

 	metaknowledge.scopus.recordScopus (module)

 	metaknowledge.scopus.scopusHandlers (module)

 	metaknowledge.scopus.tagProcessing.specialFunctions (module)

 	metaknowledge.scopus.tagProcessing.tagFunctions (module)

 	metaknowledge.WOS (module)

 	metaknowledge.WOS.recordWOS (module)

 	metaknowledge.WOS.tagProcessing.funcDicts (module)

 	metaknowledge.WOS.tagProcessing.helpFuncs (module)

 	metaknowledge.WOS.tagProcessing.tagFunctions (module)

 	metaknowledge.WOS.wosHandlers (module)

 	MH() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	MHDA() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	MID() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	mkException

 	month() (in module metaknowledge.medline.tagProcessing.specialFunctions)

 	(in module metaknowledge.WOS.tagProcessing.tagFunctions)

N

 	
 	nameStringGender() (in module metaknowledge.genders.nameGender)

 	networkBibCoupling() (metaknowledge.RecordCollection method)

 	networkCitation() (metaknowledge.RecordCollection method)

 	networkCoAuthor() (metaknowledge.RecordCollection method)

 	networkCoCitation() (metaknowledge.RecordCollection method)

 	networkCoInvestigator() (metaknowledge.GrantCollection method)

 	networkCoInvestigatorInstitution() (metaknowledge.GrantCollection method)

 	networkMultiLevel() (metaknowledge.CollectionWithIDs method)

 	
 	networkMultiMode() (metaknowledge.CollectionWithIDs method)

 	networkOneMode() (metaknowledge.CollectionWithIDs method)

 	networkTwoMode() (metaknowledge.CollectionWithIDs method)

 	NM() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	normalizeToName() (in module metaknowledge.WOS.tagProcessing.funcDicts)

 	normalizeToTag() (in module metaknowledge.WOS.tagProcessing.funcDicts)

 	NSERCGrant (class in metaknowledge.grants)

 	NSFGrant (class in metaknowledge.grants)

O

 	
 	OABL() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	OCI() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	OID() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	orcID() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	
 	ORI() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	OT() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	OTO() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	OWN() (in module metaknowledge.medline.tagProcessing.tagFunctions)

P

 	
 	pageCount() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	parserCIHRfile() (in module metaknowledge.grants.cihrGrant)

 	partNumber() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	peek() (metaknowledge.Collection method)

 	PG() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	PHST() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	PL() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	PMC() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	PMCR() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	PMID() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	pop() (metaknowledge.Collection method)

 	PRIN() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	PROF() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	proQuestClassification() (in module metaknowledge.proquest.tagProcessing.tagFunctions)

 	proQuestIdentifier_Keyword() (in module metaknowledge.proquest.tagProcessing.tagFunctions)

 	
 	proQuestParser() (in module metaknowledge.proquest.proQuestHandlers)

 	ProQuestRecord (class in metaknowledge.proquest)

 	(class in metaknowledge.proquest.recordProQuest)

 	proQuestRecordParser() (in module metaknowledge.proquest.recordProQuest)

 	proQuestSubject() (in module metaknowledge.proquest.tagProcessing.tagFunctions)

 	proQuestTagToFunc() (in module metaknowledge.proquest.tagProcessing.tagFunctions)

 	PS() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	PST() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	PT() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	publisher() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	publisherAddress() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	publisherCity() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	PUBM() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	pubMedID() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	pubType() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

Q

 	
 	quickVisual() (in module metaknowledge.contour.plotting)

R

 	
 	rankedSeries() (metaknowledge.CollectionWithIDs method)

 	RCTypeError

 	RCValueError

 	readGraph() (in module metaknowledge.graphHelpers)

 	Record (class in metaknowledge)

 	RecordCollection (class in metaknowledge)

 	recordParser() (in module metaknowledge.WOS.recordWOS)

 	RecordsNotCompatible

 	remove() (metaknowledge.Collection method)

 	removeID() (metaknowledge.CollectionWithIDs method)

 	
 	reprintAddress() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	ResearcherIDnumber() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	reverseDict() (in module metaknowledge.WOS.tagProcessing.helpFuncs)

 	RF() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	RIN() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	RN() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	ROF() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	RPF() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	RPI() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	rpys() (metaknowledge.RecordCollection method)

S

 	
 	SB() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	scopusParser() (in module metaknowledge.scopus.scopusHandlers)

 	ScopusRecord (class in metaknowledge.scopus)

 	(class in metaknowledge.scopus.recordScopus)

 	scopusRecordParser() (in module metaknowledge.scopus.recordScopus)

 	semicolonSeperated() (in module metaknowledge.scopus.tagProcessing.tagFunctions)

 	semicolonSpaceSeperated() (in module metaknowledge.scopus.tagProcessing.tagFunctions)

 	seriesSubtitle() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	seriesTitle() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	SFM() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	SI() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	SO() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	sourceFile (metaknowledge.medline.recordMedline.MedlineRecord attribute)

 	(metaknowledge.WOS.recordWOS.WOSRecord attribute)

 	(metaknowledge.proquest.recordProQuest.ProQuestRecord attribute)

 	(metaknowledge.scopus.recordScopus.ScopusRecord attribute)

 	sourceLine (metaknowledge.medline.recordMedline.MedlineRecord attribute)

 	(metaknowledge.WOS.recordWOS.WOSRecord attribute)

 	(metaknowledge.proquest.recordProQuest.ProQuestRecord attribute)

 	(metaknowledge.scopus.recordScopus.ScopusRecord attribute)

 	specialFuncs() (metaknowledge.ExtendedRecord method)

 	(metaknowledge.WOS.WOSRecord method)

 	(metaknowledge.WOS.recordWOS.WOSRecord method)

 	(metaknowledge.medline.MedlineRecord method)

 	(metaknowledge.medline.recordMedline.MedlineRecord method)

 	(metaknowledge.proquest.ProQuestRecord method)

 	(metaknowledge.proquest.recordProQuest.ProQuestRecord method)

 	(metaknowledge.scopus.ScopusRecord method)

 	(metaknowledge.scopus.recordScopus.ScopusRecord method)

 	
 	specialIssue() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	SPIN() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	split() (metaknowledge.Collection method)

 	STAT() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	stringValue() (in module metaknowledge.scopus.tagProcessing.tagFunctions)

 	subDict() (metaknowledge.ExtendedRecord method)

 	(metaknowledge.WOS.recordWOS.WOSRecord method)

 	(metaknowledge.medline.recordMedline.MedlineRecord method)

 	(metaknowledge.proquest.recordProQuest.ProQuestRecord method)

 	(metaknowledge.scopus.recordScopus.ScopusRecord method)

 	subjectCategory() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	subjects() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	supplement() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

T

 	
 	TA() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	TagError

 	tagProcessingFunc() (metaknowledge.ExtendedRecord static method)

 	(metaknowledge.WOS.WOSRecord static method)

 	(metaknowledge.WOS.recordWOS.WOSRecord static method)

 	(metaknowledge.medline.MedlineRecord static method)

 	(metaknowledge.medline.recordMedline.MedlineRecord static method)

 	(metaknowledge.proquest.ProQuestRecord static method)

 	(metaknowledge.proquest.recordProQuest.ProQuestRecord static method)

 	(metaknowledge.scopus.ScopusRecord static method)

 	(metaknowledge.scopus.recordScopus.ScopusRecord static method)

 	
 	tags() (metaknowledge.CollectionWithIDs method)

 	tagToFull() (in module metaknowledge.WOS.tagProcessing.funcDicts)

 	TI() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	timeSeries() (metaknowledge.CollectionWithIDs method)

 	title (metaknowledge.medline.recordMedline.MedlineRecord attribute)

 	(metaknowledge.WOS.recordWOS.WOSRecord attribute)

 	(metaknowledge.proquest.recordProQuest.ProQuestRecord attribute)

 	(metaknowledge.scopus.recordScopus.ScopusRecord attribute)

 	title() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	totalTimesCited() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	TT() (in module metaknowledge.medline.tagProcessing.tagFunctions)

U

 	
 	UIN() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	UnknownFile

 	UOF() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	update() (metaknowledge.grants.Grant method)

 	(metaknowledge.grants.NSERCGrant method)

 	
 	updatej9DB() (in module metaknowledge.journalAbbreviations.backend)

 	UT (metaknowledge.WOS.recordWOS.WOSRecord attribute)

 	(metaknowledge.WOS.WOSRecord attribute)

V

 	
 	values() (metaknowledge.ExtendedRecord method)

 	(metaknowledge.WOS.recordWOS.WOSRecord method)

 	(metaknowledge.medline.recordMedline.MedlineRecord method)

 	(metaknowledge.proquest.recordProQuest.ProQuestRecord method)

 	(metaknowledge.scopus.recordScopus.ScopusRecord method)

 	
 	VI() (in module metaknowledge.medline.tagProcessing.tagFunctions)

 	volume() (in module metaknowledge.medline.tagProcessing.specialFunctions)

 	(in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	VTI() (in module metaknowledge.medline.tagProcessing.tagFunctions)

W

 	
 	wosParser() (in module metaknowledge.WOS.wosHandlers)

 	WOSRecord (class in metaknowledge.WOS)

 	(class in metaknowledge.WOS.recordWOS)

 	wosString (metaknowledge.WOS.recordWOS.WOSRecord attribute)

 	(metaknowledge.WOS.WOSRecord attribute)

 	wosString() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	wosTimesCited() (in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	writeBib() (metaknowledge.RecordCollection method)

 	writeCSV() (metaknowledge.RecordCollection method)

 	writeEdgeList() (in module metaknowledge.graphHelpers)

 	writeFile() (metaknowledge.RecordCollection method)

 	
 	writeGraph() (in module metaknowledge.graphHelpers)

 	writeNodeAttributeFile() (in module metaknowledge.graphHelpers)

 	writeRecord() (metaknowledge.ExtendedRecord method)

 	(metaknowledge.WOS.WOSRecord method)

 	(metaknowledge.WOS.recordWOS.WOSRecord method)

 	(metaknowledge.medline.MedlineRecord method)

 	(metaknowledge.medline.recordMedline.MedlineRecord method)

 	(metaknowledge.proquest.ProQuestRecord method)

 	(metaknowledge.proquest.recordProQuest.ProQuestRecord method)

 	(metaknowledge.scopus.ScopusRecord method)

 	(metaknowledge.scopus.recordScopus.ScopusRecord method)

 	writeTnetFile() (in module metaknowledge.graphHelpers)

Y

 	
 	year() (in module metaknowledge.medline.tagProcessing.specialFunctions)

 	(in module metaknowledge.WOS.tagProcessing.tagFunctions)

 	
 	yearSplit() (metaknowledge.RecordCollection method)

 _static/ajax-loader.gif

_images/examples_Making-Networks_45_0.png

_images/examples_Making-Networks_52_0.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_images/examples_Making-Networks_31_0.png
Physics, M@pisciplinary
Telecomi@pications

Engineering, Elcigical & Electronic

Phy%pphed

Multidiscipl@ry Science

Phy , Ce d Matte
ysics, Cor@sed Matteg, O cinice

_images/examples_Making-Networks_36_0.png

_images/examples_Making-Networks_17_0.png

_images/examples_Making-Networks_23_0.png

_images/examples_Making-Networks_42_0.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 metaknowledge

 		
 Installation

 		
 Install with Vagrant

 		
 Student Install

 		
 Advanced Instructions

 		
 Install without Vagrant

 		
 Extending MK

 		
 Questions?

 		
 License

 		
 Documentation

 		
 Basic Example

 		
 Overview

 		
 Modules

 		
 contour

 		
 grants

 		
 journalAbbreviations

 		
 medline

 		
 proquest

 		
 scopus

 		
 WOS

 		
 Classes

 		
 CIHRGrant(Grant)

 		
 Citation(Hashable)

 		
 Collection(MutableSet, Hashable)

 		
 CollectionWithIDs(Collection)

 		
 ExtendedRecord(Record)

 		
 FallbackGrant(Grant)

 		
 Grant(Record, MutableMapping)

 		
 GrantCollection(CollectionWithIDs)

 		
 MedlineGrant(Grant)

 		
 MedlineRecord(ExtendedRecord)

 		
 NSERCGrant(Grant)

 		
 NSFGrant(Grant)

 		
 ProQuestRecord(ExtendedRecord)

 		
 Record(Mapping, Hashable)

 		
 RecordCollection(CollectionWithIDs)

 		
 ScopusRecord(ExtendedRecord)

 		
 WOSRecord(ExtendedRecord)

 		
 Functions

 		
 Exceptions

 		
 Examples

 		
 About Jupyter Notebooks

 		
 Importing

 		
 Reading Files

 		
 Objects

 		
 Record object

 		
 RecordCollection object

 		
 Citation object

 		
 Filtering

 		
 Exporting RecordCollections

 		
 Making a network

 		
 Making a co-citation network

 		
 Making a citation network

 		
 Making a co-author network

 		
 Making a one-mode network

 		
 Making a two-mode network

 		
 Making a multi-mode network

 		
 Post processing graphs

 		
 Exporting graphs

 		
 Command Line Tool

 		
 Overview

 		
 Questions?

 		
 License

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

